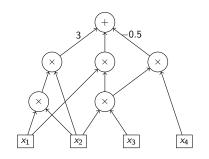
Hitting Sets for *UPT* Circuits

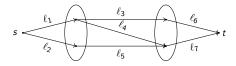
Ramprasad Saptharishi and Anamay Tengse

TIFR, Mumbai, India

6th March 2018

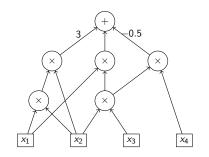
Non-commutative models

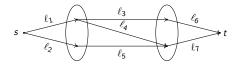




- $x_1x_2x_1 \neq x_1x_1x_2$ monomials \sim words
- ► Introduced by Nisan [N91]
- Circuits: No. of nodes
- ► ABPs: Width, No. of layers

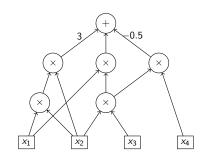
Non-commutative models

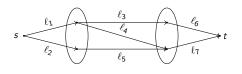




- $x_1x_2x_1 \neq x_1x_1x_2$ monomials \sim words
- ► Introduced by Nisan [N91]
- Circuits: No. of nodes
- ► ABPs: Width, No. of layers
- ► ABPs ⊊ Circuits
 [N91]

Non-commutative models





- $x_1x_2x_1 \neq x_1x_1x_2$ monomials \sim words
- ► Introduced by Nisan [N91]
- Circuits: No. of nodes
- ► ABPs: Width, No. of layers
- ► ABPs ⊊ Circuits
 [N91]

Homogeneous circuits: Each gate is homogeneous Homogeneous ABPs: Each of the ℓ_i s are homogeneous

Hitting sets for Non-commutative circuits

Given a non-commutative circuit class $\mathcal{C} \subseteq \mathbb{F}\langle \mathbf{x} \rangle$, a set of *matrices* \mathcal{H} is called a hitting set for \mathcal{C} if a nonzero $C \in \mathcal{C}$ evaluates to a nonzero value on at least one input from \mathcal{H} .

Note: Variables from \mathbf{x} can be thought of as matrices with commuting variables from \mathbf{y} as entries.

Strategy: Substitute univariates of low degree, interpolate.

$$\phi: \mathbf{y} \to \mathbb{F}[t].$$

Hitting sets for Non-commutative circuits

Given a non-commutative circuit class $\mathcal{C} \subseteq \mathbb{F}\langle \mathbf{x} \rangle$, a set of *matrices* \mathcal{H} is called a hitting set for \mathcal{C} if a nonzero $\mathcal{C} \in \mathcal{C}$ evaluates to a nonzero value on at least one input from \mathcal{H} .

Note: Variables from \mathbf{x} can be thought of as matrices with commuting variables from \mathbf{y} as entries.

Strategy: Substitute univariates of low degree, interpolate.

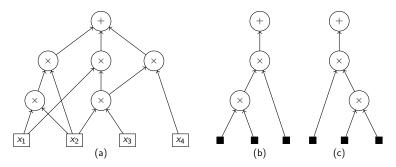
$$\phi: \mathbf{y} \to \mathbb{F}[t].$$

For this talk:

- Non-commutative circuits, ABPs
- WLOG models will be homogeneous

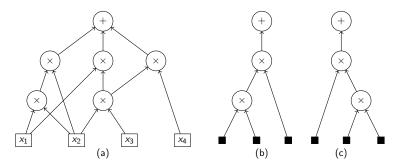
Parse Trees and Unambiguity

Parse tree: Start from root, one child of +, all children of \times

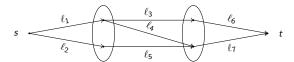


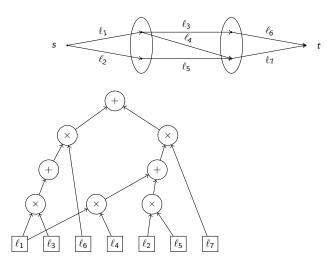
Parse Trees and Unambiguity

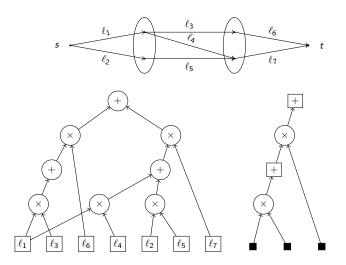
Parse tree: Start from root, one child of +, all children of \times

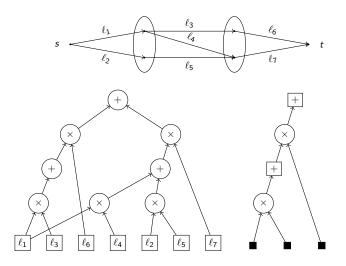


- Unambiguous or Unique Parse Tree (UPT) [LMP16] all parse trees have the same shape.
- ► ABPs ⊊ UPT ⊊ Circuits [LMP16]









▶ ABPs are UPT circuits with *left-skew* tree.

Properties of UPT circuits [LMP16]

- 1. WLOG each gate appears in a fixed position in the tree. Can be done with a *d* blow-up.
- 2. Natural notion of *width* of a position.
 - No. of gates appearing in that position.
 - Analogous to width of an ABP.
- 3. All product gates are position disjoint.
 - Consequence of 1.
 - Similar to edges in different layer segments in an ABP.

Properties of UPT circuits [LMP16]

- 1. WLOG each gate appears in a fixed position in the tree. Can be done with a *d* blow-up.
- 2. Natural notion of width of a position.

No. of gates appearing in that position.

Analogous to width of an ABP.

3. All product gates are position disjoint.

Consequence of 1.

Similar to edges in different layer segments in an ABP.

Plan:

- Overview of hitting sets for ABPs.
- Extend ideas to UPT circuits.

▶ Nisan's characterization for ABPs [N91].

- ▶ Nisan's characterization for ABPs [N91].
- ▶ [RS05] gave White box PIT for ABPs in poly(n).

- ► Nisan's characterization for ABPs [N91].
- ▶ [RS05] gave White box PIT for ABPs in poly(n).
- ▶ [FS13] *Known order* hitting sets for ROABPs in $n^{O(\log n)}$.

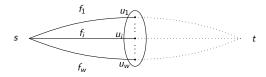
- Nisan's characterization for ABPs [N91].
- ▶ [RS05] gave White box PIT for ABPs in poly(n).
- ▶ [FS13] *Known order* hitting sets for ROABPs in $n^{O(\log n)}$.
- ► [AGKS15] *Unknown order* hitting sets for ROABPs in $n^{O(\log n)}$. Basis Isolating Weight Assignment (BIWA).

- Nisan's characterization for ABPs [N91].
- ▶ [RS05] gave White box PIT for ABPs in poly(n).
- ▶ [FS13] *Known order* hitting sets for ROABPs in $n^{O(\log n)}$.
- ► [AGKS15] *Unknown order* hitting sets for ROABPs in $n^{O(\log n)}$. Basis Isolating Weight Assignment (BIWA).
- Hitting sets for models related to ROABPs
 - ▶ Constant width, known order in poly(n) [GKS16].
 - Sum of c ROABPs: white box in poly(n), hitting sets $n^{O(\log n)}$ [GKST15] (Nisan's characterization + BIWA).

- Nisan's characterization for ABPs [N91].
- ▶ [RS05] gave White box PIT for ABPs in poly(n).
- ▶ [FS13] *Known order* hitting sets for ROABPs in $n^{O(\log n)}$.
- ► [AGKS15] *Unknown order* hitting sets for ROABPs in $n^{O(\log n)}$. Basis Isolating Weight Assignment (BIWA).
- Hitting sets for models related to ROABPs
 - ▶ Constant width, known order in poly(n) [GKS16].
 - Sum of c ROABPs: white box in poly(n), hitting sets $n^{O(\log n)}$ [GKST15] (Nisan's characterization + BIWA).
- ► [LMP16] introduced UPT circuits
 - Extend Nisan's characterization
 - White box in poly(n)

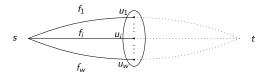
- ► Nisan's characterization for ABPs [N91].
- ► [RS05] gave White box PIT for ABPs in poly(n).
- ▶ [FS13] *Known order* hitting sets for ROABPs in $n^{O(\log n)}$.
- ► [AGKS15] *Unknown order* hitting sets for ROABPs in $n^{O(\log n)}$. Basis Isolating Weight Assignment (BIWA).
- Hitting sets for models related to ROABPs
 - ▶ Constant width, known order in poly(n) [GKS16].
 - Sum of c ROABPs: white box in poly(n), hitting sets $n^{O(\log n)}$ [GKST15] (Nisan's characterization + BIWA).
- ► [LMP16] introduced UPT circuits
 - Extend Nisan's characterization
 - White box in poly(n)
- ► [LLS17] extend *white box* results of [GKST15].

- Nisan's characterization for ABPs [N91].
- ▶ [RS05] gave White box PIT for ABPs in poly(n).
- ▶ [FS13] *Known order* hitting sets for ROABPs in $n^{O(\log n)}$.
- ► [AGKS15] *Unknown order* hitting sets for ROABPs in $n^{O(\log n)}$. Basis Isolating Weight Assignment (BIWA).
- Hitting sets for models related to ROABPs
 - ▶ Constant width, known order in poly(n) [GKS16].
 - Sum of c ROABPs: white box in poly(n), hitting sets $n^{O(\log n)}$ [GKST15] (Nisan's characterization + BIWA).
- ► [LMP16] introduced UPT circuits
 - Extend Nisan's characterization
 - White box in poly(n)
- ▶ [LLS17] extend white box results of [GKST15].
- ► *This work*: BIWA for UPT circuits, extends hitting sets of [AGKS15,GKST15,GKS15].



Preserve nonzeroness of an arbitrary linear combination of f_i s.

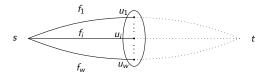
$$M_f = egin{bmatrix} \leftarrow & f_1 &
ightarrow \ \leftarrow & dots &
ightarrow \ \leftarrow & f_w &
ightarrow \end{bmatrix} \in \mathbb{F}[\mathbf{y}]^k \equiv \mathbb{F}^k[\mathbf{y}]$$



Preserve nonzeroness of an arbitrary linear combination of f_i s.

$$M_f = \begin{bmatrix} \leftarrow & f_1 & \rightarrow \\ \leftarrow & \vdots & \rightarrow \\ \leftarrow & f_w & \rightarrow \end{bmatrix} \in \mathbb{F}[\mathbf{y}]^k \equiv \mathbb{F}^k[\mathbf{y}]$$

Consider $\phi: \mathbf{y} \to \mathbb{F}[t_1, \dots, t_k]$ $(k \sim \log n)$ Such a ϕ sends columns of M_f to $n^{O(k)}$ columns.

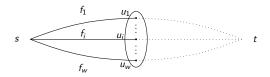


Preserve nonzeroness of an arbitrary linear combination of f_i s.

$$M_f = \begin{bmatrix} \leftarrow & f_1 & \rightarrow \\ \leftarrow & \vdots & \rightarrow \\ \leftarrow & f_w & \rightarrow \end{bmatrix} \in \mathbb{F}[\mathbf{y}]^k \equiv \mathbb{F}^k[\mathbf{y}]$$

Consider $\phi: \mathbf{y} \to \mathbb{F}[t_1, \dots, t_k]$ $(k \sim \log n)$ Such a ϕ sends columns of M_f to $n^{O(k)}$ columns. [FS13] A ϕ that preserves colSpan (M_f) suffices.

$$ColSpan(M_f) = CoeffSpan(f_1, ..., f_w)$$

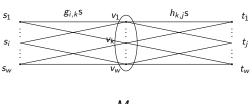


[FS13] A ϕ that preserves colSpan(M_f) suffices.

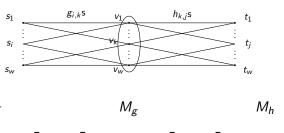
Let $(wt_1, \ldots, wt_k) : \mathbf{y} \to [N]^k$ and ϕ_{wt} be such that $\phi_{wt} : y_i \mapsto t_1^{wt_1(y_i)} \cdots t_k^{wt_k(y_i)}$.

[AGKS15] If wt is a basis isolating weight assignment (BIWA) for M_f , then ϕ_{wt} will preserve CoeffSpan.

How do we construct a BIWA?

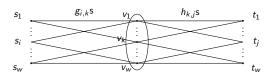


Define V_f , V_g , V_h , where $V_* = \text{rowSpan}(M_*)$.



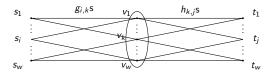
Define V_f , V_g , V_h , where $V_* = \text{rowSpan}(M_*)$.

$$f_{i,j} = \sum_{k \in [w]} g_{i,k} h_{k,j} \qquad \in V_f \subseteq V_g \otimes V_h$$



Define V_f , V_g , V_h , where $V_* = \text{rowSpan}(M_*)$.

$$f_{i,j} = \sum_{k \in [w]} g_{i,k} h_{k,j} \qquad \in V_f \subseteq V_g \otimes V_h$$



Define V_f , V_g , V_h , where $V_* = \text{rowSpan}(M_*)$.

$$f_{i,j} = \sum_{k \in [w]} g_{i,k} h_{k,j} \qquad \in V_f \subseteq V_g \otimes V_h$$

BIWA [AGKS15]:

If $\mathbf{wt}: \mathbf{y} \to [N]^k$ is a BIWA for V_g and V_h , then $\operatorname{poly}(n)$ time construction for $wt': \mathbf{y} \to [N]$ such that $(\mathbf{wt}, wt'): \mathbf{y} \to [N]^{k+1}$ is a BIWA for V_f .

So far...

Abstract view of [AGKS15]

- ▶ Each layer segment with w^2 edges naturally yields a vector space.
- ▶ Space V_f resulting from paths across consecutive layers (V_g, V_h) satisfies $V_f \subseteq V_g \otimes V_h$.
- ▶ BIWA for V_g and V_h can be extended to a BIWA for V_f by adding an extra coordinate, in poly(n) time.

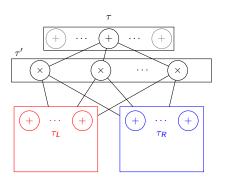
So far...

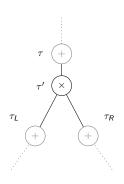
Abstract view of [AGKS15]

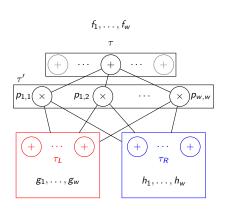
- ▶ Each layer segment with w^2 edges naturally yields a vector space.
- ▶ Space V_f resulting from paths across consecutive layers (V_g, V_h) satisfies $V_f \subseteq V_g \otimes V_h$.
- ▶ BIWA for V_g and V_h can be extended to a BIWA for V_f by adding an extra coordinate, in poly(n) time.

Properties of UPT circuits

- ightharpoonup All parse trees have the same shape, each gate \sim node.
- Analogous notion of width for nodes.
- All product gates are position disjoint.

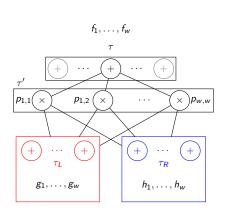






$$p_{i,j} = g_i \times h_j$$

$$f_k \in \langle \{g_i \times h_j : (i,j) \in [w]^2 \} \rangle$$

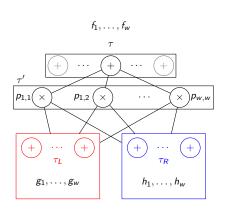


$$p_{i,j} = g_i \times h_j$$

$$f_k \in \langle \{g_i \times h_j : (i,j) \in [w]^2 \} \rangle$$

$$V_{\tau} \equiv \begin{bmatrix} \leftarrow & f_1 & \rightarrow \\ & \vdots & \\ \leftarrow & f_w & \rightarrow \end{bmatrix}$$

$$V_{\tau'}, V_{\tau_L}, V_{\tau_R}.$$



$$p_{i,j} = g_i \times h_j$$

$$f_k \in \langle \{g_i \times h_j : (i,j) \in [w]^2 \} \rangle$$

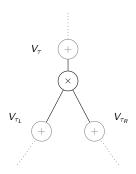
$$V_{\tau} \equiv \begin{bmatrix} \leftarrow & f_1 & \rightarrow \\ & \vdots \\ \leftarrow & f_w & \rightarrow \end{bmatrix}$$

$$V_{\tau'}, V_{\tau_L}, V_{\tau_R}.$$

$$V_{\tau} \subseteq V_{\tau'} \qquad V_{\tau'} = V_{\tau_L} \otimes V_{\tau_R}$$

$$V_{\tau} \subseteq V_{\tau_I} \otimes V_{\tau_R}$$

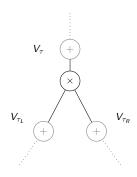
BIWA for UPT circuits



Lemma [AGKS15]

If (wt_1, \ldots, wt_k) is a BIWA for both V_{τ_L} and V_{τ_R} , then in poly(n) time we can find wt_{k+1} such that (wt_1, \ldots, wt_{k+1}) is a BIWA for all V_{τ} .

BIWA for UPT circuits

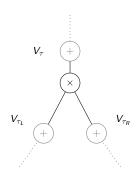


Lemma [AGKS15]

If (wt_1, \ldots, wt_k) is a BIWA for both V_{τ_L} and V_{τ_R} , then in poly(n) time we can find wt_{k+1} such that (wt_1, \ldots, wt_{k+1}) is a BIWA for all V_{τ} .

BIWA for V_{root} with at most as many coordinates as depth(C).

BIWA for UPT circuits



Lemma [AGKS15]

If (wt_1, \ldots, wt_k) is a BIWA for both V_{τ_L} and V_{τ_R} , then in poly(n) time we can find wt_{k+1} such that (wt_1, \ldots, wt_{k+1}) is a BIWA for all V_{τ} .

BIWA for V_{root} with at most as many coordinates as depth(C).

Depth Reduction by shuffling

For every UPT \mathbf{C} of degree d, an equivalent UPT $\sigma(\mathbf{C})$ of depth $O(\log d)$ exists.

Concluding remarks

Not covered:

- Extending hitting sets for sum of c ROABPs [GKST15] and constant width ROABPs [GKS16] to UPT circuits.
- Exponential lower bound against UPT circuits under shufflings for the moving pallindrome defined in [LMP16].
- Quasipolynomial (tight) separation between ABPs and UPT circuits under shufflings, extension of [HY16].

Concluding remarks

Not covered:

- ► Extending hitting sets for sum of *c* ROABPs [GKST15] and constant *width* ROABPs [GKS16] to UPT circuits.
- Exponential lower bound against UPT circuits under shufflings for the moving pallindrome defined in [LMP16].
- Quasipolynomial (tight) separation between ABPs and UPT circuits under shufflings, extension of [HY16].

Question: ABPs are UPT circuits with *skew* trees. Can we construct hitting sets for *skew circuits*?

Concluding remarks

Not covered:

- Extending hitting sets for sum of c ROABPs [GKST15] and constant width ROABPs [GKS16] to UPT circuits.
- Exponential lower bound against UPT circuits under shufflings for the moving pallindrome defined in [LMP16].
- Quasipolynomial (tight) separation between ABPs and UPT circuits under shufflings, extension of [HY16].

Question: ABPs are UPT circuits with *skew* trees. Can we construct hitting sets for *skew circuits*?

Thank you.