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Hitting sets for Non-commutative circuits

Given a non-commutative circuit class C ⊆ F〈x〉, a set of matrices
H is called a hitting set for C if a nonzero C ∈ C evaluates to a
nonzero value on at least one input from H.

Note: Variables from x can be thought of as matrices with
commuting variables from y as entries.

Strategy: Substitute univariates of low degree, interpolate.
φ : y→ F[t].

For this talk:

I Non-commutative circuits, ABPs

I WLOG models will be homogeneous
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Properties of UPT circuits [LMP16]

1. WLOG each gate appears in a fixed position in the tree.
Can be done with a d blow-up.

2. Natural notion of width of a position.
No. of gates appearing in that position.
Analogous to width of an ABP.

3. All product gates are position disjoint.
Consequence of 1.
Similar to edges in different layer segments in an ABP.

Plan:

I Overview of hitting sets for ABPs.

I Extend ideas to UPT circuits.
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Quick survey

I Nisan’s characterization for ABPs [N91].

I [RS05] gave White box PIT for ABPs in poly(n).

I [FS13] Known order hitting sets for ROABPs in nO(log n) .

I [AGKS15] Unknown order hitting sets for ROABPs in nO(log n).
Basis Isolating Weight Assignment (BIWA).

I Hitting sets for models related to ROABPs

I Constant width, known order in poly(n) [GKS16].
I Sum of c ROABPs: white box in poly(n), hitting sets nO(log n)

[GKST15] (Nisan’s characterization + BIWA).

I [LMP16] introduced UPT circuits
I Extend Nisan’s characterization
I White box in poly(n)

I [LLS17] extend white box results of [GKST15].

I This work: BIWA for UPT circuits, extends hitting sets of
[AGKS15,GKST15,GKS15].
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[FS13] A φ that preserves colSpan(Mf ) suffices.

Let (wt1, . . . ,wtk) : y→ [N]k and φwt be such that

φwt : yi 7→ t
wt1(yi )
1 · · · twtk (yi )k .

[AGKS15] If wt is a basis isolating weight assignment (BIWA) for
Mf , then φwt will preserve CoeffSpan.

How do we construct a BIWA?
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Define Vf , Vg , Vh, where V∗ = rowSpan(M∗).

fi ,j =
∑
k∈[w ]

gi ,khk,j ∈ Vf ⊆ Vg ⊗ Vh

BIWA [AGKS15]:
If wt : y→ [N]k is a BIWA for Vg and Vh, then poly(n) time

construction for wt ′ : y→ [N] such that (wt,wt ′) : y→ [N]k+1 is
a BIWA for Vf .



So far...

Abstract view of [AGKS15]

I Each layer segment with w2 edges naturally yields a vector
space.

I Space Vf resulting from paths across consecutive layers
(Vg ,Vh) satisfies Vf ⊆ Vg ⊗ Vh.

I BIWA for Vg and Vh can be extended to a BIWA for Vf by
adding an extra coordinate, in poly(n) time.

Properties of UPT circuits

I All parse trees have the same shape, each gate ∼ node.

I Analogous notion of width for nodes.

I All product gates are position disjoint.
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such that (wt1, . . . ,wtk+1) is a
BIWA for all Vτ .

BIWA for Vroot with at most as
many coordinates as depth(C ).

Depth Reduction by shuffling
For every UPT C of degree d , an
equivalent UPT σ(C) of depth
O(log d) exists.
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Concluding remarks

Not covered:

I Extending hitting sets for sum of c ROABPs [GKST15] and
constant width ROABPs [GKS16] to UPT circuits.

I Exponential lower bound against UPT circuits under shufflings
for the moving pallindrome defined in [LMP16].

I Quasipolynomial (tight) separation between ABPs and UPT
circuits under shufflings, extension of [HY16].

Question: ABPs are UPT circuits with skew trees. Can we
construct hitting sets for skew circuits?

Thank you.
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