Bootstrapping variables in circuits

Nitin Saxena (CSE@IIT Kanpur, India)

(Joint work with Manindra Agrawal & Sumanta Ghosh, STOC'18)

2018, Université Paris Diderot
Contents

- Polynomial identity testing
 - Hardness/ de-randomness & a conjecture
 - Partial Hsg
 - Perfect Bootstrapping
 - Shallow Bootstrapping
 - Constant Bootstrapping
- Conclusion
Polynomial identity testing

- Given an arithmetic circuit $C(x_1, \ldots, x_n)$ of size s, whether it is zero?
 - In $\text{poly}(s)$ many bit operations?
 - Think of field $F = \text{finite field, rationals, numberfield, or localfield}$.

- Brute-force expansion is as expensive as s^s.

- Randomization gives a practical solution.
 - Evaluate $C(x_1, \ldots, x_n)$ at a random point in F^n.
 - (Ore 1922), (DeMillo & Lipton 1978), (Zippel 1979), (Schwartz 1980).

- This test is blackbox, i.e. one does not need to see C.
 - Whitebox PIT – where we are allowed to look inside C.

- Blackbox PIT is equivalent to designing a hitting-set $H \subset F^n$.
 - H contains a non-root of each nonzero $C(x_1, \ldots, x_n)$ of size s.

Bootstrapping Variables
Polynomial identity testing

- Question of interest: Design hitting-sets for circuits.
 - Appears in numerous guises in computation.

- Complexity results
 - Interactive protocol (Babai, Lund, Fortnow, Karloff, Nisan, Shamir 1990), PCP theorem (Arora, Safra, Lund, Motwani, Sudan, Szegedy 1998), …

- Algorithms
Polynomial identity testing

- Hitting-sets relate to circuit lower bounds.

- It is conjectured that $\text{VP} \neq \text{VNP}$. (Valiant's Hypothesis 1979)
 - Or, permanent is harder than determinant?

- “proving permanent hardness” flips to “designing hitting-sets”.
 - Almost, (Heintz, Schnorr 1980), (Kabanets, Impagliazzo 2004),
 (Agrawal 2005 2006), (Dvir, Shpilka, Yehudayoff 2009), (Koiran 2011) ...

- Designing an efficient algorithm leads to awesome tools!

Hitting-set generator (Hsg)

- **Functional** version of hitting-set $H \subset F^n$ for polynomials \mathcal{P}:
 - Consider $f(y) := (f_1(y), \ldots, f_n(y))$ whose evaluations contain H.

- Call $f(y)$ a (t,d)-hsg for family \mathcal{P} if the $f_i(y)$'s are time-t computable and have degree $\leq d$.
 - By t-hsg or time-t blackbox PIT we mean a (t,t)-hsg.

- A poly(s)-degree hsg for size-s circuits can be designed in PSPACE.
 - **Hint**: the hsg exists and verified via Hilbert's Nullstellensatz.

- *(Mulmuley 2012, 2017)* What about poly(s)-degree hsg for \overline{VP}?
 - Designable in PSPACE as well! *(Guo, S., Sinhababu, 2018)*
Contents

- Polynomial identity testing
- Hardness/ de-randomness & a conjecture
- Partial Hsg
- Perfect Bootstrapping
- Shallow Bootstrapping
- Constant Bootstrapping
- Conclusion
A Working Conjecture

- Pseudorandomness in boolean circuits:
 - *(Nisan, Wigderson 1994)* Optimal prg for P/poly exists iff E-computable $2^{\Omega(n)}$-hard function family exists.

- Could we prove:
 - Poly-time hsg for VP exists iff E-computable $2^{\Omega(n)}$-hard polynomial family exists?

- **Conjecture-LB**: E-computable $2^{\Omega(n)}$-hard polynomial family exists.
 - This family \(\{f_n\} \) has individual-degree (ideg) *constant*.
 - \(\text{Coeff}(x^e)(f_n) \) is $2^{O(n)}$-computable.

- Implies: Either \(E \not\subset \#P/poly \) OR VNP is $2^{\Omega(n)}$-hard.
(Heintz, Schnorr 1980) essentially showed that a poly-time hsg implies Conjecture-LB.

- **Idea:** If \(f(y) = (f_1(y), \ldots, f_n(y)) \) is an hsg for size-\(s \) degree-\(s \) circuits \(\mathcal{P}_s \), then consider a **nonzero annihilator** \(A(z_1, \ldots, z_{\log s}) \) such that \(A(f_1(y), \ldots, f_{\log s}(y)) = 0 \).

- \(A \) is \(E \)-computable, by linear algebra.
- \(A \) is not in \(\mathcal{P}_s \). Thus, \(A(z_1, \ldots, z_m) \) is \(s^{\Omega(1)} = 2^{\Omega(m)} \)-hard.

- **Note:** 1) \(A \) exists with ideg **constant**.

- 2) The proof only uses the hsg on the first \(\log \)-variables!
Conjecture-LB “gives” Hsg-- NW Design

(Kabanets, Impagliazzo 2004) essentially showed that Conjecture-LB implies a \textit{quasi}poly-time hsg.

\begin{itemize}
\item \textit{Idea:} Let \(q_m \) be an \(\text{E} \)-computable \(2^{\Omega(m)} \)-hard polynomial family.
\item Let \(P \) be a nonzero size-\(s \) degree-\(s \) circuit.
\item Define \(\ell := c_2 \log s > m := c_1 \log s \).
\item \textit{Nisan-Wigderson Design:} Stretch the few variables \(z_1, \ldots, z_\ell \) to the \(s \) polynomials \(q_m(T_1), \ldots, q_m(T_s) \), where \(T_i \)'s are \textit{almost disjoint} \(m \)-sets.
\item Suppose \(P(q_m(T_1), \ldots, q_m(T_s)) \) vanishes. Then, by circuit factoring (Kaltofen 1989) \(q_m \) has a \textit{small} circuit. Contradiction!
\end{itemize}

\begin{itemize}
\item We get a poly-time \(s \mapsto O(\log s) \) variable reduction for VP. \qedhere
\end{itemize}

 Bootstrap Variables
Contents

- Polynomial identity testing
- Hardness/ de-randomness & a conjecture
- Partial Hsg
- Perfect Bootstrapping
- Shallow Bootstrapping
- Constant Bootstrapping
- Conclusion
Partial Hsg

- Prior proof ideas suggest that even *partial* hsg is of interest.
 - Significantly smaller variate circuits.

- Let $g_{s,m} = (g_{s,1}(y), ..., g_{s,m}(y))$ be hsg for size-s degree-s circuits P_s that depend only on first m variables.

- If $m = s^{1/c}$ then the partial hsg gives a complete hsg for P_s.
 - Blow up size $s \mapsto s^c$.

- If $m = s^{o(1)}$ then the partial hsg seems weak.
 - Naively, a size blow up of $s \mapsto s^{\omega(1)}$.
 - i.e. *super-poly* blow up to get a complete hsg.
Partial Hsg-- Bootstrap question

- **Bootstrap hsg:** For $m=\omega(s)$, given a "small" $g_{s,m}$, could you devise a "small" $g_{s,s}$?

- What about $m=\log\log s$?
- $m=\log^{o_c}s$? $m=\log^*s$?
- $m=6913$? $m=3$?
- YES! (*In this work*)

- Bootstrapping means that we only need to study **extremely low-variate** circuits.
 - To prove Conjecture-LB.
Contents

- Polynomial identity testing
- Hardness/ de-randomness & a conjecture
- Partial Hsg
- Perfect Bootstrapping
- Shallow Bootstrapping
- Constant Bootstrapping
- Conclusion
Perfect Bootstrapping

Let's start with a partial hsg for a tiny \(n = \omega(\log \log s) \).

- Let \(f(y) = (f_1(y), \ldots, f_n(y)) \) be \(s^e \)-hsg for size-\(s \) deg-\(s \) n-variate circuits \(\mathcal{P}_{s,2} \).

Bootstrap in *three* main steps:

1) Partial hsg to hard polynomial.

- Fix \(m := c_1 \log \log s \).
- Consider a *nonzero* annihilator \(A(z_1, \ldots, z_m) \) such that \(A(f_1(y), \ldots, f_m(y)) = 0 \). Denote \(A \) by \(q_{m,s} \).

- \(q_{m,s} \) is \(\text{poly}(s) \)-time computable, by linear algebra.
- \(q_{m,s} \) is not in \(\mathcal{P}_{s,2} \). Thus, \(q_{m,s} \) is \(s \)-hard.
- *Note*- ideg of \(q_{m,s} \) is \(s^{3e/m} \), so is non-constant. \(\square \)
Perfect Bootstrapping-- Step 2

2) Hard polynomial to Variable reduction.
- Define $s' := s^{c_0}$, $\ell := c_2 \log \log s'$, $m' := c_1 \log \log s'$, and $N := 2^{\log \log s'} \approx \log s$.
- Let P be a nonzero size-s degree-s N-variate circuit.
- We want to stretch the few variables z_1, \ldots, z_ℓ to N polynomials $q_{m',s'}(T_1), \ldots, q_{m',s'}(T_N)$, where T_i's are almost disjoint m'-sets. (*NW-design*)
- Suppose $P(q_{m',s'}(T_1), \ldots, q_{m',s'}(T_N))$ vanishes. Then, by circuit factoring (*Kaltofen 1989*) $q_{m',s'}$ has a small circuit. Contradiction!
- We get a poly-time ($\log s \mapsto O(\log \log s)$) variable reduction for VP. □
Perfect Bootstrapping-- Step 3

3) Reusing the partial hsg.

- Recall $s' := s^{c_0}$, $\ell := c_2 \log \log s'$, $m' := c_1 \log \log s'$ and $N := 2^{\log \log s'} \approx \log s$.

- Let P be a *nonzero* size-s degree-s N-variate circuit.

- $P(q_{m',s'}(T_1), ..., q_{m',s'}(T_N)) \neq 0$.

- It involves the few variables $z_1, ..., z_\ell$.

- So, use the s^e-hsg known for circuits $p_{s,2}$.

Repeating this shows: Partial hsg for tiny $m = \omega(\log \log s)$ gives the complete hsg in deterministic poly-time.

Theorem: Partial hsg for $m = \log^{oc}s$ yields complete hsg in deterministic poly-time.

- Any constant c.

Bootstrap Variables
Contents

- Polynomial identity testing
- Hardness/ de-randomness & a conjecture
- Partial Hsg
- Perfect Bootstrapping
- Shallow Bootstrapping
- Constant Bootstrapping
- Conclusion
Shallow Bootstrapping

Let's start with a partial hsg for depth-4 with a tiny \(n \geq 3 \).

- Let \(f(y) = (f_1(y), ..., f_n(y)) \) be \((\text{poly}(s^n), O(s^{n/2}/\log^2 s))\)-hsg for size-\(s \) deg-\(s \) \(n \)-variate depth-4 circuits \(p_s \).

Get a partial hsg for multilinear polynomials computed by depth-4 with \(m := n \log s \) variables.

- Form \(n \) blocks of \(\log s \) variables each.
- Apply \(n \) disjoint Kronecker maps locally \((x_i \mapsto y^{2^i})\). Size grows to \(s^2 \) and nonzeroness preserved.

Let \(g(y) = (g_1(y), ..., g_m(y)) \) be \((\text{poly}(s^n), O(s^{n/\log^2 s}))\)-hsg for degree \(m/2 \) multilinear polynomials \(p'_s \) computed by size-\(s \) \(m \)-variate depth-4 circuits.
Shallow Bootstrapping-- Step 1

- **Bootstrap in** two main steps:

 1) **Partial hsg to hard polynomial.**
 - Recall: p'_s is multilinear, deg $m/2$ and $m=\text{nlog } s$ variate.
 - Consider a *nonzero* annihilator $A(z_1, \ldots, z_m)$ such that
 $$A(g_1(y), \ldots, g_m(y))=0.$$ Denote A by q_m.
 - q_m is poly(s)-time computable, by linear algebra.
 - q_m is not in p'_s. Thus, q_m is s-hard *for depth-4*.
 - *Note*- We can find q_m multilinear & deg $m/2$, as:
 - #monomials $> 2^m/\sqrt{2m} > O(s^n/\log^2 s).m >$ #constraints.
 - By (Agrawal,Vinay 2008), q_m is $s=2^{\Omega(m/n)}$-hard *for VP*. □
Shallow Bootstrapping-- Step 2

2) Hard polynomial to Variable reduction.
 - Note- q_m is an E-computable $2^{\Omega(m)}$-hard polynomial family.
 - As seen before, using NW-design & circuit factoring, we get:
 - A poly-time $s \mapsto O(\log s)$ variable reduction for VP. □

After variable reduction, we can trivially design $s^{O(\log s)}$-hsg.

Theorem: $(\text{poly}(s^n), O(s^{n/2}/\log^2 s))$-hsg for size-$s$ n-variate depth-4 circuits yields quasi-hsg for VP.
 - Any constant $n \geq 3$ works!
 - Trivial is $(\text{poly}(s^n), (s+1)^n)$-hsg.
 - $\Sigma\Lambda\Sigma\Pi$ or $\Sigma\Pi\Sigma\Lambda$ circuits suffice.
 - Poly-hsg for log-variate $\Sigma\Pi\Sigma$ circuits/ width-2-ABP suffices too!
Contents

- Polynomial identity testing
- Hardness/ de-randomness & a conjecture
- Partial Hsg
- Perfect Bootstrapping
- Shallow Bootstrapping
- Constant Bootstrapping
- Conclusion
Constant Bootstrapping

- Let $m_0 < f_0$ be constants.

- Let $g(y) = (g_1(y), \ldots, g_{m_0}(y))$ be $O(s^{f_0})$-hsg for size-s deg-s m_0-variate circuits $P_{s,0}$.

- **NW design:** $(\ell := m_0, \frac{m_0}{8f_0}, d := \frac{m_0}{16f_0^2})$ and $m_1 := 2^{\left\lfloor \frac{d}{4} \right\rfloor}$.

- **Bootstrap in three main steps:**

 1) Partial hsg for $P_{s,0}$ to hard polynomial.
 - $q_{0,s}$ is $\frac{m_0}{8f_0}$ variate.
 - $q_{0,s}$ is s^{4f_0}-time computable, by linear algebra.
 - $q_{0,s}$ is not in $P_{s,0}$. Thus, $q_{0,s}$ is s-hard.
 - ideg of $q_{0,s}$ is $s^{(8f_0^2/m_0)}$, so is non-constant.

□
Constant Bootstrapping-- Step 2

2) Hard polynomial to Variable reduction.
 - Define $s' := s^7$ and $m_1 = 2^{\left(\frac{m_0}{64f_0}\right)^2}$.
 - Let P be a nonzero size-s degree-s m_1-variate circuit.
 - We want to **stretch** the few variables $z_1, ..., z_\ell$ to m_1 polynomials $q_{0,s'}(T_1),..., q_{0,s'}(T_{m_1})$,
 where T_i's are almost disjoint $(m_0/8f_0)$-sets. (NW-design)
 - Suppose $P(q_{0,s'}(T_1),..., q_{0,s'}(T_{m_1}))$ vanishes. Then, by circuit factoring (Kaltofen 1989) $q_{0,s'}$ has size $< s'$ circuit. Contradiction!

 - We get $\approx s^{(f_0 \log f_0)}$ -time $(m_1 \mapsto m_0)$ variable reduction for size-s deg-s m_1-variate circuits $P_{s,1}$.

□
Constant Bootstrapping-- Step 3

3) Reusing the partial hsg.

- Recall $s' = s^7$, $l = m_0$ and $m_1 = 2^{(m_0/64f_0^2)}$.
- Let P be a nonzero size-s degree-s m_1-variate circuit.
- $P(q_{0,s'}(T_1),...,q_{0,s'}(T_{m_1})) \neq 0$.
- It involves the few variables $z_1, ..., z_l$.
- So, use the appropriate $O(s^{f_0})$-hsg known for circuits $p_{s,0}$.

- Overall, it takes time $O(s^{(16f_0^2)})$.
- So, we define $f_1 := 16f_0^2$. □

After i repetitions, we get $O(s^{f_i})$-hsg for size-s deg-s m_i-variate circuits $p_{s,i}$.
- Thus, hsg for constant-variate circuits can be bootstrapped. □
Constant Bootstrapping

- For a rapid completion we need $m_1 = 2^{(m_0/64f_0^2)} \gg 2^{(m_0^{1-\varepsilon})}$, for a constant $\varepsilon > 0$.

 - Tetration ensures completion in $O(\log^* s)$ iterations.

- **Theorem 1:** $O(s^2)$-hsg for $m=6913$ yields complete hsg in deterministic $s^{\exp \exp(O(\log^* s))}$-time.

 - Trivial is $O(s^{6913})$-hsg.

- **Note**-- We need m_0 slightly larger than f_0^2.

- **Theorem 2:** For constant $\delta < 1/2$, s^{n^δ}-hsg for size-s degree-s n-variate circuits yields $s^{\exp \exp(O(\log^* s))}$-time hsg for size-$s$ degree-s circuits.

 - Trivial is $O(s^n)$-hsg.

 - Actually, $(O(s^n), s^{n^\delta})$-hsg will suffice!
Contents

- Polynomial identity testing
- Hardness/ de-randomness & a conjecture
- Partial Hsg
- Perfect Bootstrapping
- Shallow Bootstrapping
- Constant Bootstrapping
- Conclusion
At the end …

- **Powerful** bootstrapping of partial hsg for width-2 ABP, depth-3, depth-4 and VP models.

- Each of these partial hsg imply **Conjecture-LB**.
 - Could we connect *directly* to $\mathit{VP} \neq \mathit{VNP}$?

- Could we **design** any of these partial hsg (nontrivially)?

- Design $(s^{2^n}, s^{n/2})$-hsg for size-s $\Sigma \Pi \Sigma(n)$?

- Blackbox PIT for $O(\log^* s) \cdot \log s$ -variate size-s **diagonal** depth-3 circuits.
 - (Forbes, Ghosh, S. 2018) solved size-s $\Sigma \Lambda \Sigma(\log s)$ case.

Thank you!