On the PPA-completeness of the Combinatorial Nullstellensatz and the Chevalley-Warning Theorem

Miklos Santha

CNRS, Université Paris Diderot, France

joint work with

Alexander Belov
U. of Latvia, Riga

Gábor Ivanyos
SZTAKI, Budapest

Youming Qiao
U. Tech., Sydney

Siyi Yang
CQT, Singapore
Overview of the talk

1. The class PPA
2. CNSS and Chevalley-Warning Theorem
3. Arithmetic circuits and parse subcircuits
4. The problems PPA-Circuit Chevalley and PPA-Circuit CNSS
5. PPA-hardness and PPA-easiness
The class PPA
Functional NP (FNP)

NP-search problems are defined by binary relations

\[R \subseteq \{0, 1\}^* \times \{0, 1\}^* \] such that

- \(R \in P \),
- for some polynomial \(p(n) \), \(R(x, y) \implies |y| \leq p(|x|) \).

Search Problem \(\Pi_R \)

Input: \(x \)

Output: A solution \(y \) such that \(R(x, y) \) if there is any, or “failure”

\(\Pi_R \) is reducible to \(\Pi_S \) if there exist polynomial time computable functions \(f \) and \(g \) such that, for every positive \(x \),

\[S(f(x), y) \implies R(x, g(x, y)). \]
Total Functional NP (TFNP) [MP’91]

An NP-search problem is total if for all x there exists a solution y.

Facts:

- If $\text{FNP} \subseteq \text{TFNP}$ then $\text{NP} = \text{coNP}$.
- If $\text{TFNP} \subseteq \text{P}$ then $\text{P} = \text{NP} \cap \text{coNP}$.

TFNP is a semantic complexity class

Syntactical subclasses of TFNP:

- **Polynomial Local Search** (PLS)
 - Examples: Local optima, pure equilibrium in potential games
- **Polynomial Pigeonhole Principle** (PPP)
 - Examples: Pigeonhole SubsetSum, Discrete Logarithm
- **Polynomial Parity Argument** classes (PPA, PPAD).
Polynomial Parity Argument [P’94]

Parity Principle: In a graph the number of odd vertices is even.

Definition: PPA is the set of total problems reducible to Leaf

Leaf

Input: \((z, M, \omega)\), where
- \(z\) is a binary string
- \(M\) is a polynomial TM that defines a graph \(G_z = (V_z, E_z)\)
- \(V_z = \{0, 1\}^{p(|z|)}\) for some polynomial \(p\)
- for \(v \in V_z\), \(M(z, v)\) is a set of at most two vertices
- \(\{v, v'\} \in E_z\) if \(v' \in M(z, v)\) and \(v \in M(z, v')\)
- \(\omega \in V_z\) is a degree one vertex, the standard leaf

Output: A leaf different from \(\omega\).
PPA with edge recognition and pairing

Graphs $G_z = (V_z, E_z)$ of unbounded degree can be defined by two polynomial time algorithms ϵ and ϕ:

- **Edge recognition**: $\{v, v'\} \in E_z \iff \epsilon(v, v') = 1$
- **Pairing**: For every vertex v,
 - if $\deg(v)$ is even the function $\phi(v, \cdot)$ is a pairing between the vertices adjacent to v.
 - if $\deg(v)$ is odd then there exists exactly one neighbor w such that $\phi(v, w) = w'$, and on the remaining neighbors $\phi(v, \cdot)$ is a pairing.

Fact: A problem defined in terms of ϵ and π is in PPA.

Proof: Let $G'_z = (V'_z, E'_z)$ be defined as

- $V'_z = E_z$
- $\{\{v, w\}, \{v, w'\}\} \in E'_z$ if $\phi(w) = w'$.

...
Examples of problems in PPA

Few complete problems are known, mostly discretizations or combinatorial analogues of topological fixed point theorems:

- **3-D Sperner** in some non-orientable space [G’01]
- **Locally 2-D Sperner** [FISV’06]
- **2-D Tucker** in the Euclidean space [ABB’15]
- **Sperner** and **Tucker** on the Möbius band [DEFLQX16]
- **Octahedral Tucker** [DFK17]
- **Consensus Halving** [F-RG17]

Many problems of various origins are in PPA:

- Graph theory: **Smith, Hamiltonian decomp.** [P’94]
- Combinatorics: **Necklace splitting** and **Discrete ham sandwich** [P’94]
- Algebra: **Explicit Chevalley** [P’94]
- Number theory: **Square root** and **Factoring** [J’16]
Example: Smith

Theorem: In a cubic graph, for every edge, there is an **even** number of Hamiltonian cycles going through the edge.
Example: Sperner Lemma
Example: Sperner Lemma
Example: SPERNER LEMMA
Example: **Sperner Lemma**
Example: **Sperner Lemma**
Combinatorial Nullstellensatz and Chevalley-Warning Theorem
Combinatorial Nullstellensatz

Theorem [Alon’99]: Let \mathbb{F} be a field, let d_1, \ldots, d_n be non-negative integers, and let $P \in \mathbb{F}[x_1, \ldots, x_n]$ be a polynomial. Suppose that

- $\deg(P) = \sum_{i=1}^{n} d_i$,
- the coefficient of $x_1^{d_1} \cdots x_n^{d_n}$ is non-zero.

Then for every subsets S_1, \ldots, S_n of \mathbb{F} with $|S_i| > d_i$, there exists $(s_1, \ldots, s_n) \in S_1 \times \cdots \times S_n$ such that

$$P(s_1, \ldots, s_n) \neq 0.$$

Consequences in algebra, graph theory, combinatorics, additive number theory ...
Chevalley-Warning Theorem

Theorem [Chevalley’36, Warning’36]: Let \mathbb{F} be a field of characteristic p, and let $P_1, \ldots, P_k \in \mathbb{F}[x_1, \ldots, x_n]$ be non-zero polynomials.

If $\sum_{i=1}^{k} \deg(P_i) < n$, then the number of common zeros of P_1, \ldots, P_k is divisible by p.

In particular, if the polynomials have a common root, they also have another one.
The theorems over \mathbb{F}_2

Definition: A multilinear polynomial over \mathbb{F}_2 is

$$M(x_1, \ldots, x_n) = \sum_{T \subseteq \{1, \ldots, n\}} c_T \prod_{i \in T} x_i,$$

where $c_T \in \mathbb{F}_2$.

Fact: For every P over \mathbb{F}_2, there exists a unique multilinear polynomial M_P such that P and M_P compute the same function.

Definition: The multilinear degree of P is $\text{mdeg}(P) = \deg(M_P)$.

Theorem [Combinatorial Nullstellensatz over \mathbb{F}_2]: Let P be such that $\text{mdeg}(P) = n$. Then there exists $a \in \mathbb{F}_2^n$ such that $P(a) = 1$.

Theorem [Chevalley-Warning over \mathbb{F}_2]: Let P such that $\text{mdeg}(P) < n$, and let $a \in \mathbb{F}_2^n$ such that $P(a) = 0$. Then there exists $b \neq a$ such that $P(b) = 0$.

Theorem: $\text{mdeg}(P) < n \iff$ the number of zeros is even.
How to make them search problems?

Theorem[P’94]: The following problem is in PPA.

Explicit Chevalley

Input: Explicitly given polynomials P_1, \ldots, P_k over \mathbb{F}_2 such that

$$\sum_{i=1}^{k} \deg(P_i) < n,$$

and a common root $a \in \mathbb{F}_2^n$.

Output: Another common root $a' \neq a$.

Remark: a is common root $\iff P(a) = 0$ where

$$P = 1 + \prod_{i=1}^{k} (P_i + 1)$$

Could this be PPA-hard? Probably not. Two restrictions:

- P is given by an arithmetic circuit of specific form
- even the degree of P is less than n
Arithmetic circuits and parse subcircuits
Arithmetic circuits

\(C \) is a labeled, directed, acyclic graph.

Labels = \{+ , \times\},

\(G^+ = \text{sum gates}, \ G^\times = \text{product gates}. \)

Computational gates have indegree 2: left and right child

Polynomial computed by \(C \)

\[
C(x) = (x_1 + x_2 + x_3) \times (x_2 + x_3 + x_4)
\]

\[
= x_1x_2 + x_1x_3 + x_1x_4 + x_2^2 + x_2x_4 + x_3^2 + x_3x_4
\]
Lagrange-circuits

Circuits computing the Lagrange basis polynomials $L_a(x)$

$L_a(x) = 1 \iff x = a$

Lagrange-circuit L_{100}
Degrees in a circuit

There are 3 types of degree

Formal degree = 3 Polynomial degree = 2 Multilinear degree = 1

$x^2 = x$

easy to compute

We are interested in the multilinear degree
Multilinear degree and monomials

How can we certify $\text{mdeg}(C(x)) = n$?

What is the complexity of $M\text{DEG} = \{ C : \text{mdeg}(C(x)) = n \}$?

We wish $M\text{DEG} \in \text{NP}$

A monomial m computed by C is maximal if $\text{mdeg}(m) = n$

Fact: $\text{mdeg}(C(x)) = n \iff$ odd number of maximal monomials

Difficulty: the number of monomials computed by C can be doubly exponential in the size of C

We can certainly say that $M\text{DEG} \in \oplus \text{EXP}$
Monomials in arithmetic formulae

Let F be an arithmetic formula

Monomials are computed by parse subtrees defined by the marking of appropriate sum gates: $S : G^+ \rightarrow \{\ell, r, \ast\}$:

![Diagram of parse subtree](image-url)
Parse subcircuits

A parse subcircuit is a partial marking $S : G^+ \rightarrow \{\ell, r, *\}$ such that

marked vertices = accessible vertices

computes x_3^2

computes x_1x_4
Parse subcircuits witness monomials

\[S(C) = \text{set of parse subcircuits of } C, \]
\[m_S(x) = \text{monomial computed by parse sub circuit } S \]

Theorem: Let \(\mathbb{F} \) be a field of characteristic 2. Then

\[C(x) = \sum_{S \in S(C)} m_S(x). \]

Corollary: \(\text{MDEG} \in \text{⊕P} \)

Proposition: \(\text{MDEG} \) is \(\text{⊕P-hard} \).
The problems

PPA-Circuit Chevalley

and PPA-Circuit CNSS
Towards PPA-circuits

We would like to characterize PPA with arithmetic circuits

Auxiliary circuits I and $I \diamond C$:

\[
I(x_1, \ldots, x_n, y_1, \ldots, y_n) = \prod_{i=1}^{n} (x_i + y_i + 1)
\]

\[
I(x, y) = 1 \iff x = y
\]

\[
I \diamond C(x) = 1 \iff C(x) = x
\]
PPA-circuits

Definition: A PPA-circuit is the PPA-composition $C_{D,F}$ of two n-variable, n-output arithmetic circuits D and F over \mathbb{F}_2.

PPA-Circuit Matching Lemma:

If C is a PPA-circuit then in polynomial time a perfect matching μ can be computed between the maximal parse subcircuits of C.

Diagram:

- $I_1 \diamond D_1 \diamond F_1$
- $I_2 \diamond F_2 \diamond D_2$
- $I_3 \diamond D_3 \diamond D_4$
- $I_4 \diamond D_5$
- $I_5 \diamond F_3 \diamond F_4$
- $I_5 \diamond F_5$

- x_1, \ldots, x_n

$C_{D,F}$
PPA-Circuit Matching Lemma

We want to define a polynomial time computable μ: perfect matching on the maximal parse subcircuits of $C_{D,F}$

\[
C_{D,F} = C_1 + C_2 + C_3
\]

μ is defined inside C_1, inside C_2 and inside C_3
The matching μ inside C_1
The matching μ inside C_1

$$i \in S_{\text{out}} \text{ if the edge from the } d_i \text{ to } h_i \text{ belongs to } S$$

$$i \in S_{\text{middle}} \text{ if there exists an edge in } S \text{ from } f_i \text{ to a gate in } D$$

$$i \in S_{\text{in}} \text{ if there exists an edge in } S \text{ from } x_i \text{ to a gate in } F$$

Claim: $S_{\text{out}} \subseteq S_{\text{in}}$

$S_{\text{out}} = \{1, 2\}$

$S_{\text{middle}} = \{1, 3\}$

$S_{\text{in}} = \{1, 2, 3\}$
The matching μ inside C_1

Case 1: $S_{\text{out}} \subset S_{\text{in}}$

Let i be the smallest index in $S_{\text{in}} \setminus S_{\text{out}}$
The matching μ inside C_1

Case 2: $S_{out} = S_{in}$
The matching μ inside C_2
The matching μ inside C_2

\[S_{\text{in}} = \{1, 2, 3\} \]

\[S_{\text{middle}} = \{1, 3\} \]

\[S_{\text{out}} = \{1, 2\} \]
The matching μ inside C_2

Case 1: $S_{\text{out}} \subset S_{\text{in}}$

Let i be the smallest index in $S_{\text{in}} \setminus S_{\text{out}}$
The matching μ inside C_2

Case 2: $S_{\text{out}} = S_{\text{in}}$ and $S(g) \neq S(g')$ for some sum gate in D
The matching μ inside C_2

Case 3: $S_{out} = S_{in}$ and $S(g) = S(g')$ for all sum gate in D
The computational problems

PPA-Circuit Chevalley

Input: \((C, a)\), where
- \(C\): an \(n\)-variable PPA-circuit over \(\mathbb{F}_2\),
- \(a\): a root of \(C\).

Output: Another root \(b \neq a\) of \(C\).

PPA-Circuit CNSS

Input: \((C', a)\), where
- \(C\): an \(n\)-variable PPA-circuit over \(\mathbb{F}_2\),
- \(a\): an element of \(\mathbb{F}_2^n\).

Output: An element \(b \in \mathbb{F}_2^n\) satisfying \(C = C' \oplus L_a\).
Main Theorem: $\text{PPA-Circuit Chevalley}$ and PPA-Circuit-CNSS are PPA-complete.

The proof contains three parts:

Proposition: $\text{PPA-Circuit Chevalley}$ and PPA-Circuit CNSS are polynomially equivalent.

Hardness Theorem: $\text{PPA-Circuit Chevalley}$ is PPA-hard.

Easiness Theorem: PPA-Circuit CNSS is in PPA.
PPA-hardness and PPA-easiness
PPA-hardness

Theorem: \textbf{PPA-Circuit Chevalley} is PPA-hard.

Proof: Reduce \textbf{Leaf} to \textbf{PPA-Circuit Chevalley}.
Express the \(\leq 2 \) neighbours \(M(u) \) of \(u \) via \(D(u) \) and \(F(u) \):

- Case 1: \(\circ \) \(u \) \(\circ \) then \(D(u) = F(u) = u \),
- Case 2: \(u \rightarrow v \) \(\circ \) then \(D(u) = v \) and \(F(u) = u \),
- Case 3: \(\circ \rightarrow u \rightleftharpoons v \) \(\circ \) then \(D(u) = v \) and \(F(u) = w \)

Claim: Parity of \(\text{deg}(u) \) = Parity of satisfied components of \(C_{D,F} \)

\[
\begin{align*}
\begin{array}{ccc}
\text{(a) Case 1} & \text{(b) Case 2-a} & \text{(c) Case 2-b} \\
n & \text{(d) Case 3-a} & \text{(e) Case 3-b} & \text{(f) Case 3-c}
\end{array}
\end{align*}
\]
We prove something stronger

Matched-Circuit CNSS

Input: (C, T, μ), where
- C: an n-variable arithmetic circuit over \mathbb{F}_2,
- T: maximal parse subcircuit
- μ: polynomial time perfect matching for the maximal parse subcircuits in C but T.

Output: An element $b \in \mathbb{F}_2^n$ satisfying C.

Theorem: *Matched-Circuit CNSS* is in *PPA*
An instance of **Matched-Circuit CNSS**

Input: \(N = (C, T, \mu) \)
Remark: \(C(x) = x_1 x_2 \)

\[
\mu \text{ matches } llr \text{ and } lr* \quad \text{unmatched } T = rrl \]
PPA-easiness

Theorem: Matched-Circuit CNSS is in PPA

Proof: We reduce Matched-Circuit CNSS to Leaf.

\[G_N \text{ resulting from the Circuit-CNSS instance } N = (C, \mu, T) \]
The pairing on the left hand side

Vertex 01 of even degree:

For all parse subcircuit S, $m_S(a) = 1$, \exists sum gate g with $P_g(a) = 0$
The pairing on the left hand side

Vertex 11 of odd degree:

There exists a unique S, $m_S(a) = 1$, such that $P_g(a) = 1$ for all sum gate g

unique unmatched parse subcircuit
Thank you