Constructing Faithful Maps over Arbitrary Fields

Prerona Chatterjee

joint work with Ramprasad Saptharishi

WACT 2018

March 8, 2018

Definition: Algebraic Independence

A given set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

Definition: Algebraic Independence

A given set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

For a set of polynomials $\{f_1, f_2, \ldots, f_m\}$, the family of all algebraically independent subsets form a matroid.

Definition: Algebraic Independence

A given set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

For a set of polynomials $\{f_1, f_2, \ldots, f_m\}$, the family of all algebraically independent subsets form a matroid.

Thus, $\operatorname{algrank}(f_1, f_2, \ldots, f_m)$ is well defined.

Definition: Algebraic Independence

A given set of polynomials $\{f_1, f_2, \ldots, f_m\} \subseteq \mathbb{F}[x_1, x_2, \ldots, x_n]$ is said to be algebraically dependent if there is a non-zero polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

For a set of polynomials $\{f_1, f_2, \ldots, f_m\}$, the family of all algebraically independent subsets form a matroid.

Thus, $\operatorname{algrank}(f_1, f_2, \ldots, f_m)$ is well defined.

Question: Can we test algebraic independence efficiently?

Preliminaries

Checking Algebraic Independence

Working with Annihilating Polynomials [Kay09, GSS18]

Checking whether the constant term of all the annihilating polynomials is zero is NP-hard.

Checking Algebraic Independence

Working with Annihilating Polynomials [Kay09, GSS18]

Checking whether the constant term of all the annihilating polynomials is zero is NP-hard.

Over Characteristic Zero fields: For $f_1, f_2, \ldots, f_m \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ and $\mathbf{f} = (f_1, f_2, \ldots, f_m)$, $\mathbf{J}_{\mathbf{x}}(\mathbf{f}) = \begin{bmatrix} \partial_{x_1}(f_1) & \partial_{x_2}(f_1) & \ldots & \partial_{x_n}(f_1) \\ \partial_{x_1}(f_2) & \partial_{x_2}(f_2) & \ldots & \partial_{x_n}(f_2) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1}(f_m) & \partial_{x_2}(f_m) & \ldots & \partial_{x_n}(f_m) \end{bmatrix}$

Checking Algebraic Independence

Working with Annihilating Polynomials [Kay09, GSS18]

Checking whether the constant term of all the annihilating polynomials is zero is NP-hard.

Over Characteristic Zero fields: For $f_1, f_2, \ldots, f_m \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ and $\mathbf{f} = (f_1, f_2, \ldots, f_m)$, $\mathbf{J}_{\mathbf{x}}(\mathbf{f}) = \begin{bmatrix} \partial_{x_1}(f_1) & \partial_{x_2}(f_1) & \ldots & \partial_{x_n}(f_1) \\ \partial_{x_1}(f_2) & \partial_{x_2}(f_2) & \ldots & \partial_{x_n}(f_2) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_1}(f_m) & \partial_{x_2}(f_m) & \ldots & \partial_{x_n}(f_m) \end{bmatrix}$

The Jacobian Criterion [Jac41]

If $\mathbb F$ has characteristic zero, $\{f_1,f_2,\ldots,f_m\}$ is algebraically independent if and only if its Jacobian matrix is full rank.

Preliminaries

Basis in Linear Algebra: Given a set of vectors $\{v_1, v_2, ..., v_m\}$ with linear rank k, there is a basis of size k.

Basis in Linear Algebra: Given a set of vectors $\{v_1, v_2, ..., v_m\}$ with linear rank k, there is a basis of size k.

Definition: Faithful Maps Given a set of polynomials $\{f_1, f_2, \ldots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \ldots, x_n\} \rightarrow \mathbb{F}[y_1, y_2, \ldots, y_k]$ is said to be a faithful map if the algebraic rank of $\{f_1(\varphi), f_2(\varphi), \ldots, f_m(\varphi)\}$ is also k.

Basis in Linear Algebra: Given a set of vectors $\{v_1, v_2, ..., v_m\}$ with linear rank k, there is a basis of size k.

Definition: Faithful Maps Given a set of polynomials $\{f_1, f_2, \ldots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \ldots, x_n\} \rightarrow \mathbb{F}[y_1, y_2, \ldots, y_k]$ is said to be a faithful map if the algebraic rank of $\{f_1(\varphi), f_2(\varphi), \ldots, f_m(\varphi)\}$ is also k.

Question: Can we construct faithful maps efficiently?

Basis in Linear Algebra: Given a set of vectors $\{v_1, v_2, ..., v_m\}$ with linear rank k, there is a basis of size k.

Definition: Faithful Maps Given a set of polynomials $\{f_1, f_2, \ldots, f_m\}$ with algebraic rank k, a map $\varphi : \{x_1, x_2, \ldots, x_n\} \rightarrow \mathbb{F}[y_1, y_2, \ldots, y_k]$ is said to be a faithful map if the algebraic rank of $\{f_1(\varphi), f_2(\varphi), \ldots, f_m(\varphi)\}$ is also k.

Question: Can we construct faithful maps efficiently? Bonus: Helps in polynomial identity testing.

Check whether \mathcal{C} computes the zero polynomial or not.

Check whether $\ensuremath{\mathcal{C}}$ computes the zero polynomial or not.

 $PIT \equiv$ Variable substitution preserving non-zeroness

Check whether $\ensuremath{\mathcal{C}}$ computes the zero polynomial or not.

 $PIT \equiv$ Variable substitution preserving non-zeroness

 $C \equiv C(f_1, f_2, \dots, f_m)$: algebraic rank k

Check whether $\ensuremath{\mathcal{C}}$ computes the zero polynomial or not.

PIT ≡ Variable substitution preserving non-zeroness

 $C \equiv C(f_1, f_2, \dots, f_m)$: algebraic rank k

$$\varphi: \{x_1, x_2, \dots, x_n\} \to \mathbb{F}[y_1, y_2, \dots, y_k]$$

is a faithful map.

Check whether $\ensuremath{\mathcal{C}}$ computes the zero polynomial or not.

PIT ≡ Variable substitution preserving non-zeroness

 $C \equiv C(f_1, f_2, \dots, f_m)$: algebraic rank k

$$\varphi: \{x_1, x_2, \dots, x_n\} \to \mathbb{F}[y_1, y_2, \dots, y_k]$$

is a faithful map.

$$C(f_1, f_2, \dots, f_m) \neq 0$$
 if and only if
 $(C(f_1(\varphi), f_2(\varphi), \dots, f_m(\varphi))) \neq 0.$

[Jac41]: Gave a criterion for checking Algebraic Independence over Characteristic zero fields.

[Jac41]: Gave a criterion for checking Algebraic Independence over Characteristic zero fields.

[BMS11]: Introduced the problem and the concept of faithful maps. Applied faithful maps to solve PIT when f_1, f_2, \ldots, f_m are sparse.

[Jac41]: Gave a criterion for checking Algebraic Independence over Characteristic zero fields.

[BMS11]: Introduced the problem and the concept of faithful maps. Applied faithful maps to solve PIT when f_1, f_2, \ldots, f_m are sparse.

[ASSS12]: Extended these techniques to a variety of other models.

[Jac41]: Gave a criterion for checking Algebraic Independence over Characteristic zero fields.

[BMS11]: Introduced the problem and the concept of faithful maps. Applied faithful maps to solve PIT when f_1, f_2, \ldots, f_m are sparse.

[ASSS12]: Extended these techniques to a variety of other models.

[PSS16]: Gave a criterion for checking Algebraic Independence over arbitrary fields.

[Jac41]: Gave a criterion for checking Algebraic Independence over Characteristic zero fields.

[BMS11]: Introduced the problem and the concept of faithful maps. Applied faithful maps to solve PIT when f_1, f_2, \ldots, f_m are sparse.

[ASSS12]: Extended these techniques to a variety of other models.

[PSS16]: Gave a criterion for checking Algebraic Independence over arbitrary fields.

This work: Construct Faithful Maps over arbitrary fields and extend results in [ASSS12] to other fields.

Fact: A random affine transformation is a faithful map

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Fact: A random affine transformation is a faithful map

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Question: Can we construct faithful maps deterministically?

Preliminaries

Characteristic Zero Fields

$$\varphi : x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$
$$\begin{bmatrix} & \\ & \\ & \\ & \\ & \\ & \end{bmatrix} \mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi)) \end{bmatrix}$$

Preliminaries

$$\varphi : x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

$$\begin{bmatrix} \mathbf{J}_{\mathbf{y}}(\mathbf{f}(\varphi)) \\ \end{bmatrix} = \begin{bmatrix} \varphi(\mathbf{J}_{\mathbf{x}}(\mathbf{f})) \\ \end{bmatrix} \times \begin{bmatrix} M_{\varphi} \end{bmatrix}$$

$$\varphi: x_i = \sum_{j=1}^{\kappa} s_{ij} y_j + a_i$$

What we need: φ such that

1. rank(
$$J_x(f)$$
) = rank($\varphi(J_x(f))$)

$$\varphi: x_i = \sum_{j=1}^{\kappa} s_{ij} y_j + a_i$$

What we need: φ such that

1. rank($J_x(f)$) = rank($\varphi(J_x(f))$) : a_i s are responsible for this

Preliminaries

$$\varphi: x_i = \sum_{j=1}^{\kappa} s_{ij} y_j + a_i$$

$$\begin{bmatrix} J_{\mathbf{y}}(\mathbf{f}(\varphi)) \end{bmatrix} = \begin{bmatrix} \varphi(J_{\mathbf{x}}(\mathbf{f})) \end{bmatrix} \times \begin{bmatrix} M_{\varphi} \end{bmatrix}$$

What we need: φ such that

rank(J_x(f)) = rank(φ(J_x(f))) : a_is are responsible for this
 M_φ preserves rank

Preliminaries

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Chain Rule $\Rightarrow M_{\varphi}[i,j] = s_{ij}$

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Chain Rule $\Rightarrow M_{\varphi}[i,j] = s_{ij}$

For every $m \times n$ matrix A, rank $(A) = \operatorname{rank}(AM_{\varphi})$.

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Chain Rule $\Rightarrow M_{\varphi}[i,j] = s_{ij}$

For every $m \times n$ matrix A, rank $(A) = \operatorname{rank}(AM_{\varphi})$.

Family of matrices or one matrix parameterised by s: $\{M_{\varphi(s)}\}_{s\in\mathcal{F}}$

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Chain Rule $\Rightarrow M_{\varphi}[i,j] = s_{ij}$

For every $m \times n$ matrix A, rank $(A) = \operatorname{rank}(AM_{\varphi})$.

Family of matrices or one matrix parameterised by s: $\{M_{\varphi(s)}\}_{s\in\mathcal{F}}$

[GR05]: Vandermonde type matrices preserve rank.

[s	s^2		s ^k]
s^2	s^4		s^{2k}
	÷		:
	:	·	:
	:	·	:
	:		:
s ⁿ	,2n		s ^{kn}

$$\varphi: x_i = \sum_{j=1}^k s_{ij} y_j + a_i$$

Chain Rule $\Rightarrow M_{\varphi}[i,j] = s_{ij}$

For every $m \times n$ matrix A, rank $(A) = \operatorname{rank}(AM_{\varphi})$.

Family of matrices or one matrix parameterised by *s*: $\{M_{\varphi(s)}\}_{s\in\mathcal{F}}$

$$\varphi: x_i = \sum_{j=1}^k s^{ij} y_j + a_i$$
 will work.

[GR05]: Vandermonde type matrices preserve rank.

$$\begin{bmatrix} s & s^2 & \dots & s^k \\ s^2 & s^4 & \dots & s^{2k} \\ \vdots & \vdots & \ddots & \vdots \\ s^n & s^{2n} & \dots & s^{kn} \end{bmatrix}$$

What goes wrong over arbitrary fields?

Jacobian Matrix has partial derivatives as entries

What goes wrong over arbitrary fields?

Jacobian Matrix has partial derivatives as entries - Entries can start becoming zero
Jacobian Matrix has partial derivatives as entries - Entries can start becoming zero : Not the only case.

Jacobian Matrix has partial derivatives as entries - Entries can start becoming zero : Not the only case.

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

Jacobian Matrix has partial derivatives as entries - Entries can start becoming zero : Not the only case.

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

$$\begin{aligned} \mathbf{J}_{x,y} &= \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix} \\ \det(\mathbf{J}_{x,y}) &= (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p. \end{aligned}$$

Jacobian Matrix has partial derivatives as entries - Entries can start becoming zero : Not the only case.

 $f_1 = xy^{p-1}$, $f_2 = x^{p-1}y$: Algebraically Independent over \mathbb{F}_p .

$$\mathbf{J}_{x,y} = \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix}$$
$$\det(\mathbf{J}_{x,y}) = (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p.$$

Characteristic Zero: J has full rank <= J has an inverse

Jacobian Matrix has partial derivatives as entries - Entries can start becoming zero : Not the only case.

$$\begin{split} f_1 &= xy^{p-1}, \ f_2 &= x^{p-1}y \ : \ \text{Algebraically Independent over } \mathbb{F}_p. \\ \mathbf{J}_{x,y} &= \begin{bmatrix} y^{p-1} & (p-1)xy^{p-2} \\ (p-1)x^{p-2}y & x^{p-1} \end{bmatrix} \end{split}$$

 $\det(\mathbf{J}_{x,y}) = (xy)^{p-1} - (p^2 - 2p + 1)(xy)^{p-1} = 0 \text{ over } \mathbb{F}_p.$

Characteristic Zero: J has full rank \leftarrow J has an inverse

Finite Characteristic: Entries in "inverse" have denominators that are partial derivatives of some annihilators, which can become zero.

Preliminaries

Characteristic Zero Fields

For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $\mathbf{z} \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $z \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

[PSS16]: Look at Taylor expansions up to the "inseparable degree".

For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $\mathbf{z} \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

[PSS16]: Look at Taylor expansions up to the "inseparable degree".

Definition: A new Operator
For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
,
 $\mathcal{H}_t(f) = \deg^{\leq t} (f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}))$

Preliminaries

Characteristic Zero Fields

For any
$$f \in \mathbb{F}[x_1, x_2, ..., x_n]$$
 and $\mathbf{z} \in \mathbb{F}^n$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}) = \underbrace{x_1 \cdot \partial_{x_1} f + \dots + x_n \cdot \partial_{x_n} f}_{\text{Jacobian}} + \text{higher order terms}$$

[PSS16]: Look at Taylor expansions up to the "inseparable degree".

Definition: A new OperatorFor any
$$f \in \mathbb{F}[x_1, x_2, \dots, x_n]$$
, $\mathcal{H}_t(f) = \deg^{\leq t} (f(\mathbf{x} + \mathbf{z}) - f(\mathbf{z}))$ $\hat{\mathcal{H}}(f) = \begin{pmatrix} \dots & \mathcal{H}_t(f_1) & \dots \\ \dots & \mathcal{H}_t(f_2) & \dots \\ \vdots & \dots & \mathcal{H}_t(f_k) & \dots \end{pmatrix}$

The [PSS16] Criterion

A given set of polynomials $\{f_1, f_2, \ldots, f_k\} \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ is algebraically independent if and only if for a random $z \in \mathbb{F}^n$, $\{\mathcal{H}_t(f_1), \mathcal{H}_t(f_2), \ldots, \mathcal{H}_t(f_k)\}$ are linearly independent in

$$\frac{\mathbb{F}(\mathsf{z})[x_1, x_2, \dots, x_n]}{\mathcal{I}_t}$$

where *t* is the inseparable degree of $\{f_1, f_2, \ldots, f_k\}$ and

$$\mathcal{I}_{t} = \langle \mathcal{H}_{t}(f_{1}), \mathcal{H}_{t}(f_{2}), \dots, \mathcal{H}_{t}(f_{k}) \rangle_{\mathbb{F}(z)}^{\geq 2} \mod \langle \mathbf{x} \rangle^{t+1} \subseteq \mathbb{F}(\mathbf{z})[\mathbf{x}].$$

Alternate Statement for the [PSS16] Criterion

 $\{f_1, f_2, \ldots, f_k\}$ is algebraically independent if and only if for every (v_1, v_2, \ldots, v_k) with v_i s in \mathcal{I}_t ,

$$\mathcal{H}(\mathbf{f}, \mathbf{v}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1) + v_1 & \dots \\ \dots & \mathcal{H}_t(f_2) + v_2 & \dots \\ & \vdots & \\ \dots & \mathcal{H}_t(f_k) + v_k & \dots \end{bmatrix} \text{ has full rank over } \mathbb{F}(\mathbf{z}).$$

The Goal

What we know:

$$\mathcal{H}(\mathbf{f}, \mathbf{v}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1) + v_1 & \dots \\ \dots & \mathcal{H}_t(f_2) + v_2 & \dots \\ & \vdots & \\ \dots & \mathcal{H}_t(f_k) + v_k & \dots \end{bmatrix}$$

has full rank for every $v_1, v_2, \ldots, v_k \in \mathcal{I}_t$.

The Goal

What we know:

$$\mathcal{H}(\mathbf{f}, \mathbf{v}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1) + v_1 & \dots \\ \dots & \mathcal{H}_t(f_2) + v_2 & \dots \\ & \vdots & \\ \dots & \mathcal{H}_t(f_k) + v_k & \dots \end{bmatrix}$$

has full rank for every $v_1, v_2, \ldots, v_k \in \mathcal{I}_t$.

What we want to show:

$$\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \begin{bmatrix} \dots & \mathcal{H}_t(f_1(\varphi)) + u_1 & \dots \\ \dots & \mathcal{H}_t(f_2(\varphi)) + u_2 & \dots \\ & \vdots \\ \dots & \mathcal{H}_t(f_k(\varphi)) + u_k & \dots \end{bmatrix}$$

has full rank for every $u_1, u_2, \ldots, u_k \in \mathcal{I}_t(\varphi)$

Preliminaries

Characteristic Zero Fields

$$\varphi: x_i \to \sum_{j=1}^k s_{ij}y_j + a_iy_0 \text{ and } z_i \to \sum_{j=1}^k s_{ij}w_j + a_iw_0$$

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_iy_0 \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_iw_0$$

Sufficient Properties

1. For every **u**, there is a **v** for which $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_iy_0 \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_iw_0$$

Sufficient Properties

For every u, there is a v for which H(f(φ), u) = H(f(φ), v(φ))
 H(f(φ), v(φ)) = φ(H(f, v)) × M_φ: Chain Rule

Preliminaries

Characteristic Zero Fields

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_iy_0 \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_iw_0$$

Sufficient Properties

- **1.** For every **u**, there is a **v** for which $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- **2.** $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi)) = \varphi(\mathcal{H}(\mathbf{f}, \mathbf{v})) \times M_{\varphi}$: Chain Rule
- 3. rank($\mathcal{H}(\mathbf{f}, \mathbf{v})$) = rank($\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v}))$): a_i s are responsible for this

$$\varphi: x_i \rightarrow \sum_{j=1}^k s_{ij}y_j + a_iy_0 \text{ and } z_i \rightarrow \sum_{j=1}^k s_{ij}w_j + a_iw_0$$

Sufficient Properties

- **1.** For every **u**, there is a **v** for which $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- **2**. $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi)) = \varphi(\mathcal{H}(\mathbf{f}, \mathbf{v})) \times M_{\varphi}$: Chain Rule
- 3. rank($\mathcal{H}(\mathbf{f}, \mathbf{v})$) = rank($\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v}))$): a_i s are responsible for this
- 4. M_{φ} preserves rank

The Matrix Decomposition

The Matrix Decomposition

where

$$M_{\varphi}(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}) = \begin{cases} \operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}(\varphi(\mathbf{x}^{\mathbf{e}})) & \text{if } \sum e_i = \sum d_i \\ 0 & \text{otherwise} \end{cases}$$

Preliminaries

Characteristic Zero Fields

The PSS Criterion

Faithful Maps over Arbitrary Fields

$$\begin{bmatrix} & A & \\ & & \end{bmatrix} \times \begin{bmatrix} & M \\ & & \end{bmatrix} = \begin{bmatrix} & AM \end{bmatrix}$$

Cauchy-Binet: det(AM) = $\sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B)$.

Preliminaries

Characteristic Zero Fields

The PSS Criterion

Faithful Maps over Arbitrary Fields

Cauchy-Binet: det(AM) = $\sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B)$.

Cauchy-Binet: det(AM) = $\sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B)$.

$$\begin{bmatrix} s & \dots & s^k \\ (s^2)^1 & \dots & (s^2)^k \\ \vdots & & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & & \vdots \\ (s^n)^1 & \dots & (s^n)^k \end{bmatrix}$$

Cauchy-Binet: det(AM) = $\sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B)$.

$$\begin{array}{ccccc} x_{1} & \left[\begin{pmatrix} s^{wt(x_{1})} \end{pmatrix}^{1} & \dots & (s^{wt(x_{1})})^{k} \\ \begin{pmatrix} s^{wt(x_{2})} \end{pmatrix}^{1} & \dots & (s^{wt(x_{2})})^{k} \\ \vdots & & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ \vdots & & & \vdots \\ (s^{wt(x_{n})})^{1} & \dots & (s^{wt(x_{n})})^{k} \end{array} \right] \qquad wt(x_{i}) =$$

i

Cauchy-Binet: det(AM) = $\sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B)$.

$$\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ x_{n} \\ x_{n} \\ \left[\begin{pmatrix} s^{\text{wt}(x_{1})} \end{pmatrix}^{1} & \dots & (s^{\text{wt}(x_{1})})^{k} \\ (s^{\text{wt}(x_{2})})^{1} & \dots & (s^{\text{wt}(x_{2})})^{k} \\ \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ (s^{\text{wt}(x_{n})})^{1} & \dots & (s^{\text{wt}(x_{n})})^{k} \\ \end{array} \right] \qquad \text{wt}(x_{i}) = i$$

• If
$$B = (x_{i_1}, x_{i_2}, ..., x_{i_k})$$
, then $wt(B) = \sum_{j=1}^k j wt(x_{i_j})$

Preliminaries

Characteristic Zero Fields

Cauchy-Binet: det(AM) = $\sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B)$.

$$\begin{array}{cccc} x_{1} \\ x_{2} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ x_{n} \end{array} \begin{bmatrix} \left(s^{\text{wt}(x_{1})}\right)^{1} & \dots & \left(s^{\text{wt}(x_{1})}\right)^{k} \\ \left(s^{\text{wt}(x_{2})}\right)^{1} & \dots & \left(s^{\text{wt}(x_{2})}\right)^{k} \\ \vdots & \vdots \\ \vdots \\ \vdots \\ x_{n} \end{array} \end{bmatrix} \qquad \text{wt}(x_{i}) = i$$

• If
$$B = (x_{i_1}, x_{i_2}, \dots, x_{i_k})$$
, then $wt(B) = \sum_{j=1}^k j wt(x_{i_j})$
• $\deg_s(\det(M_B)) = wt(B)$

Cauchy-Binet: det(AM) = $\sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B)$.

• If
$$B = (x_{i_1}, x_{i_2}, ..., x_{i_k})$$
, then $wt(B) = \sum_{j=1}^k j wt(x_{i_j})$

•
$$\deg_s(\det(M_B)) = wt(B)$$

Isolate a unique non-zero minor of A with maximum weight

Cauchy-Binet: det(AM) = $\sum_{B \subseteq \{x_i\}, |B|=k} \det(A_B) \det(M_B)$.

$$\begin{array}{ccccc} x_1 \\ x_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ x_n \end{array} \begin{bmatrix} \left(s^{\operatorname{wt}(x_1)}\right)^1 & \dots & \left(s^{\operatorname{wt}(x_1)}\right)^k \\ \left(s^{\operatorname{wt}(x_2)}\right)^1 & \dots & \left(s^{\operatorname{wt}(x_2)}\right)^k \\ \vdots & & \vdots \\ \vdots \\ \vdots & \ddots & \vdots \\ \vdots \\ \left(s^{\operatorname{wt}(x_n)}\right)^1 & \dots & \left(s^{\operatorname{wt}(x_n)}\right)^k \end{bmatrix} & \operatorname{wt}(x_i) \text{ is distinct for each } i \end{aligned}$$

• If
$$B = (x_{i_1}, x_{i_2}, ..., x_{i_k})$$
, then wt $(B) = \sum_{j=1}^k j \operatorname{wt}(x_{i_j})$

- $\deg_s(\det(M_B)) = wt(B)$
- Isolate a unique non-zero minor of A with maximum weight

$$M_{\varphi}(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}) = \operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}(\varphi(\mathbf{x}^{\mathbf{e}}))$$

$$M_{\varphi}(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}) = \operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}(\varphi(\mathbf{x}^{\mathbf{e}}))$$

$$M_{\varphi}(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}) = \operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}(\varphi(\mathbf{x}^{\mathbf{e}}))$$

$$wt(\mathbf{x}^{\mathbf{e}}) = \sum_{i \in [n]} e_i wt(i)$$

$$M_{\varphi}(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}) = \operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}(\varphi(\mathbf{x}^{\mathbf{e}}))$$

$$wt(\mathbf{x}^{\mathbf{e}}) = \sum_{i \in [n]} e_i wt(i)$$
$$M_{\varphi}(\mathbf{x}^{\mathbf{e}}, y_j^d) = s^{wt(\mathbf{x}^{\mathbf{e}})j}$$

$$M_{\varphi}(\mathbf{x}^{\mathbf{e}}, \mathbf{y}^{\mathbf{d}}) = \operatorname{coeff}_{\mathbf{y}^{\mathbf{d}}}(\varphi(\mathbf{x}^{\mathbf{e}}))$$

$$wt(\mathbf{x}^{\mathbf{e}}) = \sum_{i \in [n]} e_i wt(i)$$
$$M_{\varphi}(\mathbf{x}^{\mathbf{e}}, y_j^d) = s^{wt(\mathbf{x}^{\mathbf{e}})j}$$

If
$$B = (\mathbf{x}^{\mathbf{e}_1}, \mathbf{x}^{\mathbf{e}_2}, \dots, \mathbf{x}^{\mathbf{e}_k})$$
,
then wt $(B) = \sum_{j \in [k]} j$ wt $(\mathbf{x}^{\mathbf{e}_j})$
$\begin{bmatrix} & A & \end{bmatrix} \times \begin{bmatrix} & M & \\ & & \end{bmatrix} = \begin{bmatrix} & AM & \end{bmatrix}$

Preliminaries

What we want: k columns of AM that are linearly independent.

Preliminaries

Characteristic Zero Fields

What we want: k columns of AM that are linearly independent.

Proof Strategy:

• Isolate a unique non-zero minor A_{B_0} with maximum weight

Preliminaries

What we want: k columns of AM that are linearly independent.

Proof Strategy:

- Isolate a unique non-zero minor A_{B_0} with maximum weight
- $M' \equiv k$ columns of M such that $\deg_s(\det(M'_{B_0})) = \operatorname{wt}(B_0)$

Preliminaries

A few details

About $\deg_s(\det(M'_{B_0}))$ for $B \neq B_0$:

•
$$\deg_s(\det(M'_B)) \leq wt(B)$$
 for $B \neq B_0$

A few details

About $\deg_s(\det(M'_{B_0}))$ for $B \neq B_0$:

• $\deg_s(\det(M'_B)) \le \operatorname{wt}(B)$ for $B \ne B_0$

About wt:

▶ wt "hashes" the monomials in question
⇒ there is a unique B of maximum weight.

A few details

About $\deg_s(\det(M'_{B_0}))$ for $B \neq B_0$:

• $\deg_s(\det(M'_B)) \le \operatorname{wt}(B)$ for $B \ne B_0$

About wt:

wt "hashes" the monomials in question
⇒ there is a unique B of maximum weight.

About M'

 M' can always be chosen such that its columns are indexed by "pure" monomials.

$$\varphi: x_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} y_j + a_i y_0 \text{ and } z_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} w_j + a_i y_0$$

where t is the inseparable degree and $wt(i) = (t+1)^i \mod p$.

$$\varphi: x_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} y_j + a_i y_0 \text{ and } z_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} w_j + a_i y_0$$

where t is the inseparable degree and $wt(i) = (t+1)^i \mod p$.

Properties

1. For every **u**, there is a **v** for which $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$

$$\varphi: x_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} y_j + a_i y_0 \text{ and } z_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} w_j + a_i y_0$$

where t is the inseparable degree and $wt(i) = (t+1)^i \mod p$.

Properties

- **1.** For every **u**, there is a **v** for which $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 2. $\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v})) \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$

$$\varphi: x_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} y_j + a_i y_0 \text{ and } z_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} w_j + a_i y_0$$

where t is the inseparable degree and $wt(i) = (t+1)^i \mod p$.

Properties

- **1**. For every **u**, there is a **v** for which $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{u}) = \mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- 2. $\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v})) \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- **3.** rank($\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v}))$) = rank($\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v})) \times M_{\varphi}$)

$$\varphi: x_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} y_j + a_i y_0 \text{ and } z_i \to \sum_{j=1}^k s^{\operatorname{wt}(i)j} w_j + a_i y_0$$

where t is the inseparable degree and $wt(i) = (t+1)^i \mod p$.

Properties

- 1. For every **u**, there is a **v** for which $\mathcal{H}(f(\varphi), \mathbf{u}) = \mathcal{H}(f(\varphi), \mathbf{v}(\varphi))$
- 2. $\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v})) \times M_{\varphi}$ is a sub-matrix of $\mathcal{H}(\mathbf{f}(\varphi), \mathbf{v}(\varphi))$
- **3.** $\operatorname{rank}(\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v}))) = \operatorname{rank}(\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v})) \times M_{\varphi})$
- 4. rank($\mathcal{H}(\mathbf{f}, \mathbf{v})$) = rank($\varphi(\mathcal{H}(\mathbf{f}, \mathbf{v}))$)

An Instantiation

Theorem

Let $f_1, f_2, \ldots, f_m \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ be s-sparse polynomials such that $\operatorname{algrank}(f_1, f_2, \ldots, f_m) = k$ and the inseparable degree is t. If t and k are bounded by a constant, then, there is an explicit deterministic construction of a faithful homomorphisms in $\operatorname{poly}(n, m, s)$ time.

An Instantiation

Theorem

Let $f_1, f_2, \ldots, f_m \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ be s-sparse polynomials such that $\operatorname{algrank}(f_1, f_2, \ldots, f_m) = k$ and the inseparable degree is t. If t and k are bounded by a constant, then, there is an explicit deterministic construction of a faithful homomorphisms in $\operatorname{poly}(n, m, s)$ time.

Explicit faithful homomorphisms can also be constructed efficiently for other models studied in [ASSS12] when we have similar inseparable degree bounds.

Open Threads

1. Improve the dependence on "inseparable degree".

Open Threads

1. Improve the dependence on "inseparable degree".

2. [GSS18]: Different characterisation for Algebraic dependence - not algorithmic but has no dependence on "inseparable degree"

Can we get PIT applications out of it?

Open Threads

1. Improve the dependence on "inseparable degree".

2. [GSS18]: Different characterisation for Algebraic dependence - not algorithmic but has no dependence on "inseparable degree"

Can we get PIT applications out of it?

Thank you!

Preliminaries

Characteristic Zero Fields

References I

Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena.

Jacobian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k circuits.

In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 599–614, 2012.

Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence and blackbox identity testing. In Automata, Languages and Programming - 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, pages 137–148, 2011.

Ariel Gabizon and Ran Raz.

Deterministic extractors for affine sources over large fields.

In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, pages 407–418, 2005.

References II

Zeyu Guo, Nitin Saxena, and Amit Sinhababu.

Algebraic dependencies and PSPACE algorithms in approximative complexity.

CoRR, abs/1801.09275, 2018.

C.G.J. Jacobi.

De determinantibus functionalibus.

Journal für die reine und angewandte Mathematik, 22:319–359, 1841.

Neeraj Kayal.

The complexity of the annihilating polynomial.

In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 184–193, 2009.

References III

Anurag Pandey, Nitin Saxena, and Amit Sinhababu.

Algebraic independence over positive characteristic: New criterion and applications to locally low algebraic rank circuits.

In 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 74:1–74:15, 2016.