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Algebraic Independence

Definition: Algebraic Independence

A given set of polynomials {f1, f2, . . . , fm} ⊆ F[x1, x2, . . . , xn]
is said to be algebraically dependent if there is a non-zero
polynomial combination of these that is zero.

Otherwise, they are said to be algebraically independent.

For a set of polynomials {f1, f2, . . . , fm}, the family of all
algebraically independent subsets form a matroid.

Thus, algrank(f1, f2, . . . , fm) is well defined.

Question: Can we test algebraic independence efficiently?
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Checking Algebraic Independence

Working with Annihilating Polynomials [Kay09, GSS18]

Checking whether the constant term of all the annihilating poly-
nomials is zero is NP-hard.

Over Characteristic Zero fields:
For f1, f2, . . . , fm ∈ F[x1, x2, . . . , xn] and f = (f1, f2, . . . , fm),

Jx(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x1(f1) ∂x2(f1) . . . ∂xn(f1)
∂x1(f2) ∂x2(f2) . . . ∂xn(f2)
⋮ ⋮ ⋱ ⋮

∂x1(fm) ∂x2(fm) . . . ∂xn(fm)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The Jacobian Criterion [Jac41]

If F has characteristic zero, {f1, f2, . . . , fm} is algebraically inde-
pendent if and only if its Jacobian matrix is full rank.

Preliminaries Characteristic Zero Fields The PSS Criterion Faithful Maps over Arbitrary Fields



Checking Algebraic Independence

Working with Annihilating Polynomials [Kay09, GSS18]

Checking whether the constant term of all the annihilating poly-
nomials is zero is NP-hard.

Over Characteristic Zero fields:
For f1, f2, . . . , fm ∈ F[x1, x2, . . . , xn] and f = (f1, f2, . . . , fm),

Jx(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x1(f1) ∂x2(f1) . . . ∂xn(f1)
∂x1(f2) ∂x2(f2) . . . ∂xn(f2)
⋮ ⋮ ⋱ ⋮

∂x1(fm) ∂x2(fm) . . . ∂xn(fm)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The Jacobian Criterion [Jac41]

If F has characteristic zero, {f1, f2, . . . , fm} is algebraically inde-
pendent if and only if its Jacobian matrix is full rank.

Preliminaries Characteristic Zero Fields The PSS Criterion Faithful Maps over Arbitrary Fields



Checking Algebraic Independence

Working with Annihilating Polynomials [Kay09, GSS18]

Checking whether the constant term of all the annihilating poly-
nomials is zero is NP-hard.

Over Characteristic Zero fields:
For f1, f2, . . . , fm ∈ F[x1, x2, . . . , xn] and f = (f1, f2, . . . , fm),

Jx(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x1(f1) ∂x2(f1) . . . ∂xn(f1)
∂x1(f2) ∂x2(f2) . . . ∂xn(f2)
⋮ ⋮ ⋱ ⋮

∂x1(fm) ∂x2(fm) . . . ∂xn(fm)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The Jacobian Criterion [Jac41]

If F has characteristic zero, {f1, f2, . . . , fm} is algebraically inde-
pendent if and only if its Jacobian matrix is full rank.

Preliminaries Characteristic Zero Fields The PSS Criterion Faithful Maps over Arbitrary Fields



Rank Preserving Maps

Basis in Linear Algebra: Given a set of vectors {v1, v2, . . . , vm}
with linear rank k , there is a basis of size k .

Definition: Faithful Maps

Given a set of polynomials {f1, f2, . . . , fm} with algebraic rank k ,
a map ϕ ∶ {x1, x2, . . . , xn} → F[y1, y2, . . . , yk]

is said to be a faithful map if the algebraic rank of
{f1(ϕ), f2(ϕ), . . . , fm(ϕ)} is also k .

Question: Can we construct faithful maps efficiently?

Bonus: Helps in polynomial identity testing.
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Faithful Maps and Poly. Identity Testing [BMS11, ASSS12]

C

×

+

⋯ ⋯x1 x2 xn⋯ ⋯

f1 ⋯ ⋯ fm
⋯ ⋯

⋯ ⋯ϕ1 ϕ2 ϕn

y1 y2 ⋯ ⋯ yk

Check whether C computes the zero
polynomial or not.

PIT ≡ Variable substitution preserving
non-zeroness

C ≡ C(f1, f2, . . . , fm): algebraic rank k

ϕ ∶ {x1, x2, . . . , xn} → F[y1, y2, . . . , yk]

is a faithful map.

C(f1, f2, . . . , fm) ≠ 0 if and only if

(C(f1(ϕ), f2(ϕ), . . . fm(ϕ))) ≠ 0.
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A Quick Survey

[Jac41]: Gave a criterion for checking Algebraic Independence over
Characteristic zero fields.

[BMS11]: Introduced the problem and the concept of faithful maps.
Applied faithful maps to solve PIT when f1, f2, . . . , fm are sparse.

[ASSS12]: Extended these techniques to a variety of other models.

[PSS16]: Gave a criterion for checking Algebraic Independence over
arbitrary fields.

This work: Construct Faithful Maps over arbitrary fields and
extend results in [ASSS12] to other fields.
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Constructing Faithful Maps over Characteristic Zero Fields

Fact: A random affine transformation is a faithful map

ϕ ∶ xi =
k
∑
j=1

sijyj + ai
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Constructing Faithful Maps over Characteristic Zero Fields

Fact: A random affine transformation is a faithful map

ϕ ∶ xi =
k
∑
j=1

sijyj + ai

Question: Can we construct faithful maps deterministically?
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Constructing Faithful Maps over Characteristic Zero Fields

ϕ ∶ xi =
k
∑
j=1

sijyj + ai
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Jy(f(ϕ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Preliminaries Characteristic Zero Fields The PSS Criterion Faithful Maps over Arbitrary Fields



Constructing Faithful Maps over Characteristic Zero Fields

ϕ ∶ xi =
k
∑
j=1

sijyj + ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jy(f(ϕ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ(Jx(f))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Preliminaries Characteristic Zero Fields The PSS Criterion Faithful Maps over Arbitrary Fields



Constructing Faithful Maps over Characteristic Zero Fields

ϕ ∶ xi =
k
∑
j=1

sijyj + ai

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jy(f(ϕ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ(Jx(f))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
What we need: ϕ such that

1. rank(Jx(f)) = rank(ϕ(Jx(f)))

2. Mϕ preserves rank
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A Rank Preserving Matrix and a Faithful Map [BMS11]

ϕ ∶ xi =
k
∑
j=1

sijyj + ai

Chain Rule ⇒Mϕ[i , j] = sij

For every m × n matrix A,
rank(A) = rank(AMϕ).

Family of matrices or one matrix
parameterised by s: {Mϕ(s)}s∈F

ϕ ∶ xi =
k
∑
j=1

s ijyj + ai will work.

[GR05]: Vandermonde type
matrices preserve rank.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s s2 . . . sk

s2 s4 . . . s2k

⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋮

sn s2n . . . skn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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What goes wrong over arbitrary fields?

Jacobian Matrix has partial derivatives as entries

- Entries can start
becoming zero : Not the only case.

f1 = xyp−1, f2 = xp−1y : Algebraically Independent over Fp.

Jx ,y = [ yp−1 (p − 1)xyp−2

(p − 1)xp−2y xp−1 ]

det(Jx ,y) = (xy)p−1 − (p2 − 2p + 1)(xy)p−1 = 0 over Fp.

Characteristic Zero: J has full rank ⇐ J has an inverse

Finite Characteristic: Entries in "inverse" have denominators that
are partial derivatives of some annihilators, which can become zero.
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Looking Further in the Taylor Expansion [PSS16]

For any f ∈ F[x1, x2, . . . , xn] and z ∈ Fn,

f (x + z) − f (z) = x1 ⋅ ∂x1 f +⋯ + xn ⋅ ∂xn f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Jacobian

+ higher order terms

[PSS16]: Look at Taylor expansions up to the "inseparable degree".

Definition: A new Operator

For any f ∈ F[x1, x2, . . . , xn],

Ht(f ) = deg≤t (f (x + z) − f (z))

Ĥ(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . Ht(f1) . . .

. . . Ht(f2) . . .
⋮

. . . Ht(fk) . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Preliminaries Characteristic Zero Fields The PSS Criterion Faithful Maps over Arbitrary Fields



Looking Further in the Taylor Expansion [PSS16]

For any f ∈ F[x1, x2, . . . , xn] and z ∈ Fn,

f (x + z) − f (z) = x1 ⋅ ∂x1 f +⋯ + xn ⋅ ∂xn f
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Jacobian

+ higher order terms

[PSS16]: Look at Taylor expansions up to the "inseparable degree".

Definition: A new Operator

For any f ∈ F[x1, x2, . . . , xn],

Ht(f ) = deg≤t (f (x + z) − f (z))
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The [PSS16] Criterion

A given set of polynomials {f1, f2, . . . , fk} ∈ F[x1, x2, . . . , xn] is
algebraically independent if and only if for a random z ∈ Fn,
{Ht(f1),Ht(f2), . . . ,Ht(fk)} are linearly independent in

F(z)[x1, x2, . . . , xn]
It

where t is the inseparable degree of {f1, f2, . . . , fk} and

It = ⟨Ht(f1),Ht(f2), . . . ,Ht(fk)⟩≥2F(z) mod ⟨x⟩t+1 ⊆ F(z)[x].
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Alternate Statement for the [PSS16] Criterion

{f1, f2, . . . , fk} is algebraically independent if and only if for every
(v1, v2, . . . , vk) with vi s in It ,

H(f,v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . Ht(f1) + v1 . . .

. . . Ht(f2) + v2 . . .
⋮

. . . Ht(fk) + vk . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

has full rank over F(z).
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The Goal

What we know:

H(f,v) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . Ht(f1) + v1 . . .

. . . Ht(f2) + v2 . . .
⋮

. . . Ht(fk) + vk . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

has full rank for every v1, v2, . . . , vk ∈ It .

What we want to show:

H(f(ϕ),u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . Ht(f1(ϕ)) + u1 . . .

. . . Ht(f2(ϕ)) + u2 . . .
⋮

. . . Ht(fk(ϕ)) + uk . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

has full rank for every u1,u2, . . . ,uk ∈ It(ϕ)
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Constructing Faithful Maps over Arbitrary Fields

ϕ ∶ xi →
k
∑
j=1

sijyj + aiy0 and zi →
k
∑
j=1

sijwj + aiw0

Sufficient Properties

1. For every u, there is a v for which H(f(ϕ),u) = H(f(ϕ),v(ϕ))

2. H(f(ϕ),v(ϕ)) = ϕ(H(f,v)) ×Mϕ: Chain Rule

3. rank(H(f,v)) = rank(ϕ(H(f,v))): ai s are responsible for this

4. Mϕ preserves rank
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The Matrix Decomposition

⎡⎢⎢⎢⎢⎢⎣
H(f(ϕ),v(ϕ))

⎤⎥⎥⎥⎥⎥⎦
=

labelled by xe

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎣

ϕ(H(f,v))
⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

labelled by yd

where

Mϕ(xe,yd) = { coeffyd(ϕ(xe)) if ∑ ei = ∑di
0 otherwise
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What makes Vandermonde type matrices work?

⎡⎢⎢⎢⎢⎢⎣
A

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

AM

⎤⎥⎥⎥⎥⎥⎦
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What makes Vandermonde type matrices work?

⎡⎢⎢⎢⎢⎢⎣
A

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

AM

⎤⎥⎥⎥⎥⎥⎦

Cauchy-Binet: det(AM) = ∑B⊆{xi}, ∣B ∣=k det(AB)det(MB).
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What makes Vandermonde type matrices work?

Cauchy-Binet: det(AM) = ∑B⊆{xi}, ∣B ∣=k det(AB)det(MB).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s s2 . . . sk

s2 s4 . . . s2k

⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋱ ⋮
⋮ ⋮ ⋮

sn s2n . . . skn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s . . . sk

(s2)1
. . . (s2)k

⋮ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋮

(sn)1 . . . (sn)k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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What makes Vandermonde type matrices work?

Cauchy-Binet: det(AM) = ∑B⊆{xi}, ∣B ∣=k det(AB)det(MB).

x1
x2
⋮
⋮
⋮
⋮

xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(swt(x1))1
. . . (swt(x1))k

(swt(x2))1
. . . (swt(x2))k

⋮ ⋮
⋮ ⋱ ⋮
⋮ ⋱ ⋮
⋮ ⋮

(swt(xn))1
. . . (swt(xn))k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wt(xi) = i
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The Current Matrix

xe

yd

1

2

⋱

⋱

t

Mϕ(xe,yd) = coeffyd(ϕ(xe))

Taking inspiration from the
prev. case: Mϕ(xi , yj) = swt(i)j

wt(xe) = ∑i∈[n] ei wt(i)

Mϕ(xe, yd
j ) = swt(xe

)j

If B = (xe1 ,xe2 , . . . ,xek ),

then wt(B) = ∑j∈[k] j wt(xej )
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A Rank Preserving Matrix

↑
k
↓

⎡⎢⎢⎢⎢⎢⎣
A

⎤⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

AM

⎤⎥⎥⎥⎥⎥⎦

What we want: k columns of AM that are linearly independent.

Proof Strategy:
▸ Isolate a unique non-zero minor AB0 with maximum weight
▸ M ′ ≡ k columns of M such that degs(det(M ′

B0
)) = wt(B0)
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A few details

About degs(det(M ′

B0
)) for B ≠ B0:

▸ degs(det(M ′

B)) ≤ wt(B) for B ≠ B0

About wt:

▸ wt "hashes" the monomials in question
⇒ there is a unique B of maximum weight.

About M ′

▸ M ′ can always be chosen such that its columns are indexed by
"pure" monomials.
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A Faithful Map over Arbitrary Fields

ϕ ∶ xi →
k
∑
j=1

swt(i)jyj + aiy0 and zi →
k
∑
j=1

swt(i)jwj + aiy0

where t is the inseparable degree and wt(i) = (t + 1)i mod p.

Properties

1. For every u, there is a v for which H(f(ϕ),u) = H(f(ϕ),v(ϕ))

2. ϕ(H(f,v)) ×Mϕ is a sub-matrix of H(f(ϕ),v(ϕ))

3. rank(ϕ(H(f,v))) = rank(ϕ(H(f,v)) ×Mϕ)

4. rank(H(f,v)) = rank(ϕ(H(f,v)))
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An Instantiation

Theorem

Let f1, f2, . . . , fm ∈ F[x1, x2, . . . , xn] be s-sparse polynomials such
that algrank(f1, f2, . . . , fm) = k and the inseparable degree is t.
If t and k are bounded by a constant, then, there is an ex-
plicit deterministic construction of a faithful homomorphisms in
poly(n,m, s) time.

Explicit faithful homomorphisms can also be constructed efficiently
for other models studied in [ASSS12] when we have similar
inseparable degree bounds.
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Open Threads

1. Improve the dependence on "inseparable degree".

2. [GSS18]: Different characterisation for Algebraic dependence -
not algorithmic but has no dependence on "inseparable degree"

Can we get PIT applications out of it?

Thank you!
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